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Abstract

Behavior of X-rays diffracted in a perfect or quasi-perfect crystal can be described by the dynam-

ical theory of X-ray diffraction. Study on the two-beam cases in which only transmitted and one

reflected X-ray beams are strong has a history of one hundred years. However, the population

of researchers who study on the multiple-beam cases (n-beam cases) in which more than two

beams are simultaneously strong is small. The present author has derived the Takagi-Taupin

(T-T) dynamical theory that can be applied to the n-beam cases, coded the computer programs

to solve it and experimentally verified them by using the synchrotron X-rays. The equivalence

between the Ewald-Laue (E-L) and the T-T dynamical theories described by the Fourier trans-

form also for the n-beam cases is explicitly verified in the present paper. Further, the methods

of the computer simulations and the experiments are also described.

Furthermore, a hypothesis concerning the too large values of R-factor in protein

crystallography is also described. This might be extremely important in protein

crystallography in the future.
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1. Introduction

The theory that describes the behavior of X-rays diffracted in a perfect or quasi-perfect crystal

is called as the dynamical theory. Just after the discovery of the X-ray diffraction by von. Laue,

basic theories were given by Darwin (Darwin, 1914a; Darwin, 1914b) and by Ewald (Ewald,

1917). The most widely known dynamical theory is the Ewald-Laue (E-L) theory that has been

derived by applying the two-beam approximation to the fundamental equation given by von.

Laue (Laue, 1931). There are several textbooks that describe the dynamical theory (Zachariasen,

1945; Azároff et al., 1974; Pinsker, 1978; Authier, 2005).

1

However, the Takagi-Taupin (T-T) equation that has been derived by Takagi (Takagi, 1962;

Takagi, 1969; Taupin, 1964; Kato, 1973) was accepted as another form of the dynamical theory.

It can deal with the X-ray wave field in a distorted crystal. Various images of the crystal defects

were computer-simulated based on the T-T equation (Epelboin, 1985; Epelboin, 1987).

Incidentally, it can easily be understood that n reciprocal lattice nodes (n ≥ 3) can exist on

the surface of the Ewald sphere by rotating the crystal around the axis of
−−−→
H0H1. Here, H0 is the

origin of the reciprocal space and H1 is the reciprocal lattice node that causes the
−−−→
H0H1 reflection.

X-ray intensity measurement taken by rotating the
−−−→
H0H1 axis is called as the Renninger scan

(Renninger, 1937).

1The present manuscript has been translated by the author for submission to JSR from a review article published
in Journal of the Japanese Society for Synchrotron Radiation Research (2020) 33 61-80 [in Japanese].
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While silicon, diamond and/or germanium crystals are usually used as the monochromator

in the energy scan of X-ray spectroscopy, discontinuities of the X-ray intensity are frequently

found and referred to as glitches. When scanning the photon energy of X-rays by rotating the

monochromator crystal, the radius of the Ewald sphere changes. Then, a third reciprocal lattice

node other than the origin of the reciprocal space H0 and reciprocal lattice node H1 giving the

primary reflection causes the glitch when it exists on the surface of the Ewald sphere.

Let refer to the case that n-reciprocal lattice nodes H0, H1, H2, · · · , Hn−1 exist on the surfaces

of the Ewald sphere as the n-beam cases. The E-L two-beam dynamical diffraction theory was

extended such as to deal with the n-beam cases in 1965-1968 (Saccocio & Zajac, 1965a; Saccocio

& Zajac, 1965b; Joko & Fukuhara, 1967; Hildebrandt, 1967; Ewald & Héno, 1968; Héno & Ewald,

1968). The numerical method to solve the theory was given by Colella in 1974 (Colella, 1974).

However, the extension of the T-T equation was delayed for many years due to the com-

plexity when dealing with the polarization effect of X-rays. The three-beam T-T equation that

neglected the polarization effect was given by Thorkildsen in 1987 (Thorkildsen, 1987). The

T-T equation that takes into account the polarization factor was for the first time given by

Larsen and Thorkildsen in 1998 (Larsen & Thorkildsen, 1998). The present author reported the

T-T equation extended to the n-beam cases for n ∈ {3, 4, 6, 8, 12} in 2003 (Okitsu, 2003). The

numerical method to solve it and experimental verification by using the synchrotron radiation

was given by the present author and coauthors for a six-beam case (Okitsu et al., 2003; Okitsu

et al., 2006; Okitsu et al., 2011). The computer-simulated and experimentally obtained results

to be compared with each other for the n-beam cases were reported for n ∈ {3, 4, 5, 6, 8, 12}

in 2012 by Okitsu, Imai and Yoda (Okitsu et al., 2012). The excellent agreements were found

between the computer-simulated and the experimentally obtained pinhole topographs.

Between the E-L and the T-T dynamical theories, there is a simple relation described by the

Fourier transform that has been implicitly recognized but has been explicitly described for the

first time in 2012 (Okitsu et al., 2012). It can be recognized that this delayed the extension to

the n-beam cases of the T-T equation in comarison with the E-L dynamical theory.

In the present paper, the n-beam E-L theory is derived from Laue’s fundamental equation
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of the dynamical theory (Laue, 1931) at first. Then, the n-beam T-T equation is derived by

Fourier-transforming the n-beam E-L theory. The equivalence between the n-beam E-L and

T-T dynamical theories is explicitly described also for an arbitrary number of n.

The n-beam dynamical diffraction phenomena of X-rays can be described by both the T-T

and E-L theories and be numerically solved. The numerical methods to solve these theories have

advantages and disadvantages when compared with each other. The present author considers

that they should be used depending to the purpose with this recognition.

Authier’s book describing the dynamical theory of X-ray diffraction (Authier, 2005) is recog-

nized to be the most widely read textbook that has over 500 pages. However, it has only 24 pages

for description on the n-beam diffraction. In Pinsker’s book (Pinsker, 1978), descriptions concern-

ing the n-beam E-L theory are found. These have been revied by Weckert and Hümmer (Weckert

& Hümmer, 1997; Weckert & Hümmer, 1998) and Colella (Colella, 1995a; Colella, 1995b).

2. Derivation of the Ewald-Laue (E-L) n-beam dynamical theory

The following equation is the fundamental equation of the dynamical theory (Laue, 1931):

k2i −K2

k2i
Di =

∑
j

χhi−hj
[Dj ]⊥ki

. (1)

Here, ki is the wavenumber of the ith numbered Bloch wave whose wavevector is ki (= k0+hi)

of the ith numbered Bloch wave. k0 is the forward-diffracted X-ray beam in the crystal. hi is

the scattering vector. K(= 1/λ) is the the wavenumber of the incident X-rays in vacuum where

λ is the wavelength of them. Di and Dj are amplitude vectors of the ith and jth numbered

Bloch waves.
∑

j is the infinite summation for j. χhi−hj
is the Fourier coefficient of the electric

susceptibility. [Dj ]⊥ki
is the vector component of Dj perpendicular to ki.

By applying the approximation of ki+K ≈ 2ki to (1), the following equation can be obtained:

ξiDi =
K

2

∑
j

χhi−hj
[Dj ]⊥ki

, (2)

where ξi = ki −K.

The electric displacement vectors Di and Dj can be reperesented as linear combinations of the
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scalar electric displacements as follows:

Di = D(0)
i e

(0)
i +D(1)

i e
(1)
i , (3a)

Dj = D(0)
j e

(0)
j +D(1)

j e
(1)
j . (3b)

When si is a unit vector in the direction of ki and then e
(0)
i and e

(1)
i are defined such that

si, e
(0)
i and e

(1)
i construct a right-handed orthogonal system in this order. sj , e

(0)
j and e

(1)
j are

defined in the same way.

Fig. 1. Geometry around the Laue point La0. Pl0 and Pl3 are planes whose distance from H0

and H3 is K(= 1/λ). Plh is a plane normal to nz (downward surface normal). The Laue point
La0 and the point P′′

1 exist on Plh. Pli (i ̸= {0, 3}) were not drawn for simplicity. Lai and
La′i are points whose distance from Hi (i ∈ {0, 1, · · · , n − 1}) is K. P′

1 is the start point of
wavevector of the Bloch wave. P′

1,k that appears in equation (51) is the kth numbered P′
1 i.e.

the start point of wavevector of the kth numbered Bloch wave where k ∈ {1, 2, 3, · · · , 2n}.

With regard to the following description, Fig. 1 should be referred. When considering the

number of n for cubic crystals with the highest symmetry, the number of reciprocal lattice

nodes n that can simultaneously exist on the surface of the Ewald sphere, is restricted to be
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3, 4, 5, 6, 8 and 12 by applying the approximation that the distances of the reciprocal lattice

nodes other than n reciprocal lattice nodes to be taken into account, are sufficiently far from the

surface of the Ewald sphere. The Laue point La0 is the point whose distance from the reciprocal

lattice nodes Hi (i ∈ {0, 1, · · · , n−1}) is K (= 1/λ). λ is the wavelength of the X-rays in vacuum.

Pli is a plane surface that approximates the sphere whose radius is K and center is Hi. Only Pl0

and Pl3 are drawn in Fig. 1. The Laue point is darely symbolized as La0 such that the theories

can be extended for the cases that |
−−−→
La0Hi| is not exactly equal K.

P1 is the point on Pl0 that is the start point of the wavevector of the incident X-rays whose

end point is H0. The polarization factors C and S are defined as follows,

e
(m)
j = S

(m)
i,j si + C

(0,m)
i,j e

(0)
i + C

(1,m)
i,j e

(1)
i . (4)

Therefore,

S
(m)
i,j = si · e(m)

j , (5a)

C
(0,m)
i,j = e

(0)
i · e(m)

j , (5b)

C
(1,m)
i,j = e

(1)
i · e(m)

j . (5c)

By substituting (3a) and (3b) into the left and right sides of (2), respectively, the following

equations can be obtained:

ξi
(
D(0)

i e
(0)
i +D(1)

i e
(1)
i

)
=

K

2

n−1∑
j=0

χhi−hj

[
D(0)

j e
(0)
j +D(1)

j e
(1)
j

]
⊥ki

. (6)

By substituting (4) into the right side of (6) and comparing the terms of e
(l)
i ,

ξiD(l)
i =

K

2

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D(m)

j . (7)

−−−→
P′
1P1 is parallel to the downward surface normal nz of the crystal and described as follows:

−−−→
P′
1P1 = ξnz. (8)

β(0) and β(1) are the angular deviations of the start point of wavevector of the incident X-rays.

In reference with Fig. 1, they are described as follows:

−−−−→
P1La0 = Kβ(0)e

(0)
0 +Kβ(1)e

(1)
0 . (9)
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ξi (= ki − K) is obtained from the scalar product of si and ki − Ki. Here, ki =
−−−→
P′
1Hi and

Ki =
−−−→
La0Hi. (5a) can be substituted into the scalar product of si ·

−−−−→
P′
1La0 to obtain the following

equation:

ξi = si ·
(−−−→
P′
1P1 +

−−−−→
P1La0

)
(10a)

= ξsi · nz +Kβ(0)si · e(0)0 +Kβ(1)si · e(1)0 (10b)

= ξ cosΘi +Kβ(0)S
(0)
i,0 +Kβ(1)S

(1)
i,0 . (10c)

(10) can be substituted into the left side of (7) to obtain the following equation:

ξ cosΘiD(l)
i +K

(
S
(0)
i,0 β

(0) + S
(1)
i,0 β

(1)
)
D(l)

i =
K

2

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D(m)

j . (11)

Here, i, j ∈ {0, 1, · · · , n− 1}, n ∈ {3, 4, 5, 6, 8, 12} and l,m ∈ {0, 1}. Θi is the angle spanned by

si and nz. By deviding the both sides of (11) by cosΘi, the following equation can be obtained:

ξD(l)
i = − K

cosΘi

(
S
(0)
i,0 β

(0) + S
(1)
i,0 β

(1)
)
D(l)

i +
K

2 cosΘi

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D(m)

j . (12)

(12) can also be described by using matrices and a vector as follows:

ξEDDD = ADDD . (13)

Here, E is a 2n×2n unit matrix. DDD is a 2n-dimensional column vector whose qth element is D(m)
j

where q = 2j +m+ 1. Hereafter, eigenvector or matrix whose column vectors are eigenvectors,

are symbolized with flower characters. The element of the pth raw and qth column of the 2n×2n

matrix A, ap,q(p = 2i+ l + 1) is given as follows:

ap,q =
K

2 cosΘi
χhi−hj

C
(l,m)
i,j − δp,qK

cosΘi

(
S
(0)
i,0 β

(0) + S
(1)
i,0 β

(1)
)
. (14)

Here, δp,q is the Kronecker delta. (13) describes an eigenvalue problem whose 2n eigenvalues are

ξ and 2n eigen vectors are DDD . ξ restricts the wavevector of the the Bloch wave. DDD are amplitude

ratios of the Amplitudes. The two-beam E-L theory can also be described as an eigenvalue

problem. However, any textbook that describes the two-beam theory as an eigenvalue problem

cannot be found. The conventional description of the two-beam dynamical theory has two steps,
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i.e. description of the dispersion surfaces at first and then (13) is deformed as follows:

(
A− ξE

)
DDD = O. (15)

Here, O are a 2n-dimensional column vector whose all elements are zero.

det
(
A− ξE

)
= 0. (16)

(16) describes the condition for (15) has the solution other than zero vector. In the two-beam

case, σ- and π-polarized X-rays can be dealt with independently since they do not interfere with

each other. Further, the term of j = i of the left side of (2) is deleted in general by defining the

Lorentz point. The dispersion surfaces described with (16) can be approximated by hyperbolic

curves whose cross point of the asymptotes is the Lorentz point. Then, the two-beam E-L theory

can be approximately solved analytically. In the description of the present paper, Lorentz point

is not defined. There is an advantage that the T-T equation explicitly having the term of j = i

can deal with the wave fields in an arbitrary shaped crystal (Okitsu et al., 2011). The dispersion

surfaces for the n-beam cases are described by a complex 2nth order equation whose analytical

solution cannot be obtained. This is one of the reason for the late development of the n-beam

dynamical theory.

The numerical solution of the n-beam E-L theory has been given by Colella in 1974 (Colella,

1974) for the first time. Colella’s method takes into account the curvature of the sphere whose

radius is K and center is Hi. This method gives the numerical solution with a higher precision

when the start point of the wavevector of Incident X-rays is far distant from the Laue Point in

comparison with the method to solve the eigenvalue problem described by (13).

In Fig. 1, Lai whose distance from Hi (i ∈ {6, 7, · · · , 17}) is K, is also described in addition to

the Laue point La0 whose distance from H0, H1, H2, H3, H4 and H5 is K. For later description

in §5.7 regarding to the 18-beam case as shown in Fig. 19, the definition of Lai is necessary.

In Fig. 1,
−−−−→
La0Lai is parallel to

−−−→
P′
1P1. Then, ξD(l)

i in the left side of (12) should be replaced

with (ξ+ξ′i)D
(l)
i . Here, ξ′i = 0 for i < 6. (14) that gives elements of 2n×2n matrix in (13) should
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be rewritten as follows:

ap,q =
K

2 cosΘi
χhi−hj

C
(l,m)
i,j − δp,qK

cosΘi

(
S
(0)
i,0 β

(0) + S
(1)
i,0 β

(1)
)
− δp,qξ

′
i, (17)

where, ξ′i = 0 for i < 6.

Fig. 18 (b) has been obtained in the following sequence i.e. i) define the 2n×2n (n = 18) matrix

whose elements are as described in (17), ii) solve the eigenvalue problem of (13) and iii) fast

Fourier transform the diffraction curves obtained based on (47).

This has an important meaning. In the T-T equation that has been described in 2012 (Okitsu

et al., 2012), the n reciprocal lattice nodes should be on a circle in the reciprocal space. However,

both for the E-L and T-T dynamical theories described in the present paper, the above restriction

has been removed.

Further, La′0 is separately defined in the vicinity of La0 in Fig. 1 Then, La′i (i ∈ {0, 1, 2, · · · , n−

1}) are defined on Pli such that
−−−−→
La′0La

′
i = ξ′′i nz. The n-beam E-L theory corresponding to (11)

is described as follows:

ξ cosΘiD′(l)
i +K

(
S
(0)
i,0 β

′(0) + S
(1)
i,0 β

′(1)
)
D′(l)

i

= −ξ′′i cosΘiD′(l)
i +

K

2

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D′(m)

j , (18)

where, i, j ∈ {0, 1, · · · , n− 1},

n is number of reciprocal lattice nodes,

l,m ∈ {0, 1}.

Here,
−−−−→
P1La

′
0= Kβ′(0)e

(0)
0 + Kβ′(1)e

(1)
0 . The reason for that the first term of the left side of the

above equation will be described after deriving (34a) and (34b). The equation corresponding to

(12) is given as follows:

ξD′(l)
i =− K

cosΘi

(
S
(0)
i,0 β

′(0) + S
(1)
i,0 β

′(1)
)
D′(l)

i − ξ′′i D
′(l)
i

+
K

2 cosΘi

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D′(m)

j . (19)

Further, (17) can be replaced with the following equation:

ap,q =
K

2 cosΘi
χhi−hj

C
(l,m)
i,j − δp,qK

cosΘi

(
S
(0)
i,0 β

′(0) + S
(1)
i,0 β

′(1)
)
− δp,qξ

′′
i . (20)

IUCr macros version 2.1.17: 2023/10/19



10

(20) can be solved by substituting the above equation into (13) even when n (n is an arbitrary

number) reciprocal lattice nodes to be taken into account that exist in the vicinity of the surface

of the Ewald sphere.

2.1. Derivation of the the Takagi equation (T-T theory) from the Ewald-Laue (E-L) theory

In this section, the n-beam T-T equation is derived from the n-beam E-L theory described by

(11) and/or (12). The exchange of the order of integration in the reciprocal space and differen-

tiation in the real space and that of integration and summation are essential of the discussion.

Let the whole wave field D̃(r) i.e. the solution of the dynamical theory be described as follows:

D̃(r) =
n−1∑
i=0

1∑
l=0

e
(l)
i D

(l)
i (r) exp

(
−i2π

−−−→
La0Hi · r

)
. (21)

Here, r is the location vector. For the later description, let r be described as a linear combination

of si, e
(0)
i and e

(1)
i as follows:

r = sisi + e
(0)
i e

(0)
i + e

(1)
i e

(1)
i . (22)

The amplitude of the ith numbered wave with polarization state of l can be described as follows:

D(l)
i (∆k) exp

(
−i2π

−−−→
P′
1Hi · r

)
= D(l)

i (∆k) exp
(
− i2π∆k · r

)
exp

(
−i2π

−−−→
La0Hi · r

)
, (23)

where ∆k =
−−−−→
P′
1La0.

Let us decribe the amplitudes of Bloch waves D(l)
i as D(l)

i (∆k) to clartify these amplitudes are

functions of ∆k. Further, for later description, let us confirm that ∆k are described from (8)

and (9) as follows:

∆k = ξnz +Kβ(0)e
(0)
0 +Kβ(1)e

(1)
0 . (24)

D(l)
i (∆k) can be an arbitrary function of ∆k. For example, D(l)

i (∆k) is the Dirac delta function

of ∆k for the condition of plane wave incidence. However, the constant function whose amplitude

and phase do not change depending on ∆k for the condition of spherical wave incidence.

Since D
(l)
i (r) and D

(m)
j (r) are the amplitudes of the ith and jth numbered waves whose

polarization states are l and m are considered to be coherent superpositions of Bloch waves,
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they are described as follows:

D
(l)
i (r) =

∫ D.S.

∆k
D(l)

i (∆k) exp (−i2π∆k · r) dS, (25a)

D
(m)
j (r) =

∫ D.S.

∆k
D(m)

j (∆k) exp (−i2π∆k · r) dS. (25b)

Here,
∫D.S.
∆k dS means the integration over the dispersion surfaces. Since there are 2n cou-

ples of dispersion surfaces and eigenvectors, they can be described as
∑2n

k=1

∫D.S.
∆k dS. However,

(25) has been described under the assumption that
∫D.S.
∆k dS means an integration for 2n dis-

persion surfaces in (25a) and (25b) for simplicity in the later deformation of the equations.

D
(l)
i (r) and D

(m)
j (r) are the amplitudes that modulate the waves of exp(−i2π

−−−→
La0Hi · r) e

(l)
i

and exp(−i2π
−−−−→
La0Hj · r) e

(m)
j , respectively. By substituting (22) and (24) and considering the

polarization factors defined as in (5a), the following equation can be obtained:

D
(l)
i (r) =

∫ D.S.

∆k
D(l)

i (∆k)

× exp
{
− i2π

[(
ξ cosΘi +Kβ(0)S

(0)
i,0 +Kβ(1)S

(1)
i,0

)
si + fi

(
e
(0)
i , e

(1)
i

)]}
dS. (26)

Here, fi
(
e
(0)
i , e

(1)
i

)
are functions of e

(0)
i , e

(1)
i that do not depend on si. Therefore, ∂D

(l)
i (r)/∂si

can be calculated as follows:

∂

∂si
D

(l)
i (r) =

∂

∂si

∫ D.S.

∆k
D(l)

i (∆k) exp (−i2π∆k · r) dS (27a)

=

∫ D.S.

∆k

∂

∂si

[
D(l)

i (∆k) exp (−i2π∆k · r)
]
dS (27b)

= −i2π

∫ D.S.

∆k

[
ξ cosΘi +K

(
S
(0)
i,0 β

(0) + S
(1)
i,0 β

(1)
)]

×D(l)
i (∆k) exp (−i2π∆k · r) dS. (27c)

On the other hand, in place of ∆k in (24), let define ∆k′ as follows:

∆k′ =
−−−−→
P′
1La

′
0 (28a)

= ξnz +Kβ′(0)e
(0)
0 +Kβ′(1)e

(1)
0 . (28b)

In (25) and (26), ∆k, D(l)
i (∆k), D

(m)
j (r), D(m)

j (∆k), β(0) and β(1) can be replaced with ∆k′,
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D
′(l)
i (r), D′(l)

i (∆k′), D
′(m)
j (r), D′(m)

j (∆k′), β′(0) and β′(1) to obtain the following equation:

∂

∂si
D

′(l)
i (r) = −i2π

∫ D.S.

∆k′

[
ξ cosΘi +K

(
S
(0)
i,0 β

′(0) + S
(1)
i,0 β

′(1)
)]

×D′(l)
i (∆k′) exp

(
−i2π∆k′ · r

)
dS. (29)

When n reciprocal lattice nodes exist on a circle in the reciprocal space, D
(l)
i (r) in (27) is the

amplitude that modulates the oscillation of exp
(
− i2π

−−−→
La0Hi ·r

)
e
(l)
i . However, D

′(l)
i (r) in (29) is

the amplitude that modulates the oscillation of exp
(
− i2π

−−−→
La′0Hi · r

)
e
(l)
i . (29) has been derived

to generalize the T-T equation in the later description such as to take into account all reciprocal

lattice nodes in the vicinity of the surface of the Ewald sphere.

By substituting (11) into (27), the following equations can be obtained:

∂

∂si
D

(l)
i (r) = −iπK

∫ D.S.

∆k

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D(m)

j (∆k) exp (−i2π∆k · r) dS (30a)

= −iπK
n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j

∫ D.S.

∆k
D(m)

j (∆k) exp (−i2π∆k · r) dS. (30b)

(25b) can be substituted into (30) to obtain the following equation:

∂

∂si
D

(l)
i (r) = −iπK

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D

(m)
j (r), (31)

where, i, j ∈ {0, 1, · · · , n− 1},

n ∈ {3, 4, 5, 6, 8, 12},

l,m ∈ {0, 1}.

The above equation (31) is the n-beam T-T equation applicable to the cases where n reciprocal

lattice nodes exist on an identical circle in the reciprocal space.

Incidentally, in the case of a perfect crystal, the electric susceptibility in the crystal χ(r) can be

Fourier-expanded to be χ(r)=
∑

iχhi
exp

(
− i2πhi ·r

)
. However, in the cases that the crystal has

the lattice displacement field u(r), the electric susceptibility is approximately Fourier-expanded

as follows:

χ
[
r− u(r)

]
=

∑
i

χhi
exp

{
− i2πhi ·

[
r− u(r)

]}
(32a)

=
∑
i

χhi
exp

[
i2πhi · u(r)

]
exp

(
− i2πhi · r

)
. (32b)
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Then, when the crystal has the lattice displacement field of u(r), the Fourier coefficient of the

electric susceptibility is a function of the position in the crystal, can be described as χhi−hj
exp

[
i

2π(hi−hj) ·u(r)
]
. Therefore, (31) can be deformed for a crystal having the lattice displacement

field as follows:

∂

∂si
D

(l)
i (r) = −iπK

n−1∑
j=0

χhi−hj
exp

[
i2π(hi − hj) · u(r)

] 1∑
m=0

C
(l,m)
i,j D

(m)
j (r). (33)

The above equation (33) is nothing but the n-beam T-T equation (Okitsu et al., 2006; Okitsu

et al., 2012) that can deal with the X-ray wave fields in a deformed crystal in the case that n

reciprocal lattice nodes exist on an identical circle in the reciprocal space (Okitsu et al., 2006;

Okitsu et al., 2012).

Next, let us derive the n-beam T-T equation to take into account the all reciprocal lattice

nodes in the vicinity of the surface of the Ewald sphere.

As decribed just before deriving (18), La′0 is the 0th-numbered ‘generalized Laue point’ that

exist on Pl0 in Fig. 1. As described before,
−−−−→
La′0La

′
i is ξ′′i nz (see Fig. 1). For the case that

n reciprocal lattice nodes exist on an identical circle in the reciprocal space, (11) has been

substituted into (27) to obtain (30). To generalize the n-beam T-T equation such as to take into

account the all reciprocal lattice nodes in the vicinity of the surface of the Ewald sphere, (18)

can be substituted into (29) to obtain the following equation:

∂

∂si
D

′(l)
i (r) = i2πξ′′i cosΘi

∫ D.S.

∆k′
D′(l)

i (∆k′) exp
[
− i2π∆k′ · r

]
dS

− iπK

∫ D.S.

∆k′

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D′(m)

j (∆k′) exp
(
−i2π∆k′ · r

)
dS (34a)

= i2πξ′′i cosΘiD
′(l)
i (r)− iπK

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D

′(m)
j (r), (34b)

where, i, j ∈ {0, 1, · · · , n− 1},

n is the number of reciproca lattice nodes,

l,m ∈ {0, 1}.

At first glance, it might seem like the calculation can be simplified by putting that ∆k′
i =

−−−→
P′
1La

′
i to change the contents of the integration of the right side of (25a) to be D′(l)

i (∆k′
i)
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exp(−i2π∆k′
i · r). However, in this case, the second term of (34a) cannot be deformed to be the

second term of (34b) since the contents of the integration in the right side of (25b) should be

D(m)
j (∆k′

j) exp(−i2π∆k′
j · r) to keep the symmetry of the equation. For this reason, the first

term of the right side of (18) has not been transferred to the left side. Then, based on (32), the

following equation is obtained:

∂

∂si
D

′(l)
i (r) = i2πξ′′i cosΘiD

′(l)
i (r)

− iπK
n−1∑
j=0

χhi−hj
exp

[
i2π(hi − hj) · u(r)

] 1∑
m=0

C
(l,m)
i,j D

′(m)
j (r). (35)

The above equation (35) is the n-beam T-T equation that describes the X-ray wave fields in a

crystal that has lattice displacement field by taking into account all reciprocal lattice nodes in

the vicinity of the surface of the Ewald sphere.

Now let us derive the equation applicable for the case that plane wave X-rays are incident on

the crystal. D
′(l)
i (r) and D

′(m)
j (r) in (34b) are X-ray amplitudes that modulate the oscillations

of exp(−i2π
−−−→
La′0Hi · r) e(l)i and exp(−i2π

−−−−→
La′0Hj · r) e(m)

j , respectively. D
′′(l)
i (r) and D

′′(m)
j (r) are

X-ray amplitudes that modulate the oscillations of exp(−i2π
−−−→
P1Hi · r) e(l)i and exp(−i2π

−−−→
P1Hj

· r) e(m)
j . In reference to Fig. 1, we can understand the following relations

D
′(l)
i (r) = D

′′(l)
i (r) exp

(
− i2π

−−−−→
P1La

′
0 · r

)
(36a)

= D
′′(l)
i (r) exp

[
− i2πK

(
β′(0)e

(0)
0 + β′(1)e

(1)
0

)
· r

]
, (36b)

D
′(m)
j (r) = D

′′(m)
j (r) exp

(
− i2π

−−−−→
P1La

′
0 · r

)
. (36c)

The both sides of (36b) can be partially differentiated as follows:

∂

∂si
D

′(l)
i (r) =

[ ∂

∂si
D

′′(l)
i (r)

]
exp

(
− i2π

−−−−→
P1La

′
0 · r

)
− i2πK

(
β′(0)S

(0)
i,0 + β′(1)S

(1)
i,0

)
D

′′(l)
i (r) exp

(
− i2π

−−−−→
P1La

′
0 · r

)
. (37)

(36a), (36b) and (37) can be substituted into (34b) to obtain the following equation:

∂

∂si
D

′′(l)
i (r) = i2πξ′′i cosΘiD

′′(l)
i (r) + i2πK

(
β′(0)S

(0)
i,0 + β′(1)S

(1)
i,0

)
D

′′(l)
i (r)

− iπK
n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D

′′(m)
j (r). (38)
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D
′′(l)
i (r) and D

′′(m)
j (r) in the above equation (38) are X-ray amplitudes that modulate the oscil-

lations of exp
(
−i2π

−−−→
P1Hi ·r

)
e
(l)
i and exp

(
−i2π

−−−→
P1Hj ·r

)
e
(m)
j . Under the condition that plane

wave X-rays whose wavevector is
−−−→
P1H0 are incident on the crystal, a constant value of D

′′(0)
0 (r)

and/or D
′′(1)
0 (r) should be given as the boundary condition depending on the polarization state

of the incident X-rays.

When the downward surface normal of the crystal is nz and unit vectors ex and ey are defined

such that ex, ey and nz construct a right-handed orthogonal system in this order and the location

vector r= xex +yey+znz, the X-ray amplitudes obtained by solving (38) are the function of

only z not depending on the values of x and y. Therefore, they can be described as D
′′(l)
i (z) and

D
′′(m)
j (z). Then, ∂D

′′(l)
i (r)/∂si in the left side of (38) can be deformed as follows:

∂D
′′(l)
i (r)

∂si
= si ·

( dD
′′(l)
i (z)

dz

)
nz (39a)

= cosΘi
dD

′′(l)
i (z)

dz
. (39b)

(39) can be substituted into (38) to obtain the ordinary differential equation as follows:

d

dz
D

′′(l)
i (z) = i2πξ′′i D

′′(l)
i (z) +

i2πK

cosΘi

(
β′(0)S

(0)
i,0 + β′(1)S

(1)
i,0

)
D

′′(l)
i (z)

− iπK

cosΘi

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j D

′′(m)
j (z). (40)

(40) can be described also as an eigenvalue problem whose numerical solution can be obtained by

using the numerical subroutine libralies e.g. LAPACK. Also from this, the equivalence between

the E-L and T-T theories can be verified. However, the details of this are not described here.

2.2. Derivation of the Ewald-Laue (E-L) theory from the Takagi-Taupin (T-T) equation

In this section, the n-beam E-L theory described in (11) and/or (12) is derived from the

n-beam T-T equation described in (31).

When plane wave X-rays are incident on the crystal to excite 2n tie points on the dispersion

surfaces, total wave field D̃ is described as the summation of Bloch waves as follows:

D̃ =
n−1∑
i=0

1∑
l=0

e
(l)
i D(l)

i (∆k) exp (−i2π∆k · r) exp
(
−i2π

−−−→
La0Hi · r

)
. (41)
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Here, D
(l)
i (r)= D(l)

i (∆k) exp(−i2π
−−−→
P1Hi · r) and D(m)

j (r) = D(m)
j (∆k) exp(−i2π

−−−→
P1Hj ·r). There-

fore,

∂

∂si

[
D(l)

i (∆k) exp (−i2π∆k · r)
]

= −iπK
n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j

[
D(m)

j (∆k) exp (−i2π∆k · r)
]
. (42)

However, the left side of (42) can be deformed in the same procedure used when deriving (26)

as follows:

∂

∂si

[
D(l)

i (∆k) exp
(
− i2π∆k · r

)]
= D(l)

i (∆k)
∂

∂si
exp

{
− i2π

[(
ξ cosΘi +Kβ(0)S

(0)
i,0 +Kβ(1)S

(1)
i,0

)
si + fi

(
e
(0)
i , e

(1)
i

)]}
(43a)

= −i2π
(
ξ cosΘi +Kβ(0)S

(0)
i,0 +Kβ(1)S

(1)
i,0

)
D(l)

i (∆k) exp
(
− i2π∆k · r

)
. (43b)

The right hands of (42) and (43) can be compared to obtain the same equation as (11). The

equivalence between the E-L and T-T theories that can be described by the Fourier transform,

has been verified explicitly from the descriptions of the previous and present subsections.

As far as the present author knows, just a short statement concerning this relation between

the E-L and T-T theories for the two-beam case can be found only in §11.3 of Authier’s book

(Authier, 2005).
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3. Numerical method to solve the n-beam dynamical theories

3.1. Numerical method to solve the n-beam T-T equation

Fig. 2. These figures show small hexagonal pyramids used when solving the n-beam T-T equation
(31) in a six-beam case whose results are shown in Fig. 12 [reproduction of Fig. 1 in Okitsu,
Imai and Yoda (2012)].

In reference to Fig. 2 (a) and 2 (b), the algorithm to solve the n-beam T-T equation as

described in (31) for n = 6 is explained. The following method was used to obtain the computer-

simulated images shown in Fig. 12.
−−−−−→
R

(0)
i R(1) in Fig. 2 (a) is parallel to si. When the length of

−−−−−→
R

(0)
i R(1) is sufficiently small compared with the value of |−1/(χ0K)|, the n-beam T-T equation
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can be approximated by the following equation:

D
(l)
i (R(1))−D

(l)
i (R

(0)
i )∣∣∣∣−−−−−→R

(0)
i R(1)

∣∣∣∣ = −iπK
n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j

D
(m)
j (R

(0)
i ) +D

(m)
j (R(1))

2
. (44)

(44) describes 2n-dimensional simultaneous linear equations for (i ∈ {0, 1, · · · , n−1}, l ∈ {0, 1})

and can be numerically solved by using subroutine e.g. ZGeTRF and ZGeTRS in the lapack

(Linear Algebra subroutine library Package).

Fig. 3. This figure shows a top view of Fig. 2 (b) (reproduction of Fig. 2 in Okitsu et al.
(2012)(Okitsu et al., 2012)).

Fig. 3 is the top view of Fig. 2 (b). In this case, 0 0 0-forward diffracted, 4 0 4, 4 2 6, 0 6 6,

2 6 4 and 2 2 0-reflected X-ray beams are simultaneously strong (see Fig. 12). The angle spanned

by the directions of nx and ny is 120◦. Vectors
−−−−−→
RincR

(1)
i (i ∈ {0, 1, 2, 3, 4, 5}) in Fig. 2 (b) are

parallel to the directions of propagations of 0 0 0-forward diffracted, 4 0 4, 4 2 6, 0 6 6, 2 6 4 and

2 2 0-reflected X-ray beams. A four-dimensional array Deven(i, l, nx, ny) [i ∈ {0, 1, · · · , n − 1},

l ∈ {0, 1}, nx ∈ {· · · ,−2,−1, 0, 1, 2, · · · }, ny ∈ {· · · ,−2,−1, 0, 1, 2, · · · }] should be prepared

such that the calculated X-ray amplitudes are saved. Here, i is the ordinal number of the X-ray
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wave, l (l ∈ {0, 1}) is the polarization state, nx and ny are two-dimensional positions on the

layer in the crystal. The crystal is divided to sufficiently large number of layers. The calculations

are repeated layer by layer toward the depth direction. As shown in Fig. 2 (a), X-ray amplitudes

Dodd(j,m, nx, ny) just below the crystal surface can be obtained from Dodd(i, l, nx − 0, ny − 0),

Dodd(i, l, nx−0, ny−2), Dodd(i, l, nx−1, ny−3), Dodd(i, l, nx−3, ny−3), Dodd(i, l, nx−3, ny−2),

and Dodd(i, l, nx − 1, ny − 0) by solving (44). Outside the Borrmann pyramid as shown in Fig.

2 (b), the wave fields do not exist. The calculation is performed by scanning insid the Bormann

pyramid. The values of χhi−hj
were calculated by using XOP version 2.3 (del Rio & Dejus, 1998)

The difference equation that approximates the standard differential equation (40) is given as

follows:

D
′′(l)
i (z +∆z)−D

′′(l)
i (z)

∆z
= i2π

[
ξ′′i +

K

cosΘi

(
β′(0)S

(0)
i,0 + β′(1)S

(1)
i,0

)] D′′(l)
i (z) +D

′′(l)
i (z +∆z)

2

− iπK

cosΘi

n−1∑
j=0

χhi−hj

1∑
m=0

C
(l,m)
i,j

D
′′(m)
j (z) +D

′′(m)
j (z +∆z)

2
. (45)

(45) can be solved in a short time only when incident plane-wave X-rays excite n diffracted

X-ray beams all in Laue geometries.

3.2. Numerical method to solve the n-beam E-L theory

After substituting (14) into matrix A of (13), kth (k ∈ {1, 2, · · · , 2n}) eigenvalue ξk and

eigenvector DDDk can be solved by using subroutine libraries e.g. LAPACK.

In this way, wave vectors and amplitude ratios of the qth
(
q = 2j+m+1

)
Bloch wave. On the

other hand, mixing ratio of 2n Bloch waves should be calculated such as to satisfy the boundary

condition.

After making 2n× 2n matrix DDD whose element of qth raw and kth column is Dq,k (= D
(m)
j,k ),

the following equation is obtained:

DDDα(0) =
(
1, 0, 0, · · · , 0, 0

)T
, (46a)

DDDα(1) =
(
0, 1, 0, · · · , 0, 0

)T
. (46b)

The above equations (46a) and (46b) are the boundary conditions that should be given for the
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entrance surface when an X-ray beam whose polarization state is l (l ∈ {0, 1}) is incident on the

crystal. These equations can be solved to obtain the kth element α
(l)
k of the column vector α(l).

These are mixing ratios of kth Bloch waves. Then, the amplitudes D(l,m)
j (exit)

[
= D(l)

q (exit)
]

of the jth numbered X-ray beam whose polarization state is m, can be obtained as follows:

D(l,m)
j (exit) = D(l)

q (exit) (47a)

=
2n∑
k=1

α
(l)
k D

(m)
j,k exp[−i2πξkTz]. (47b)

Here, Tz is the thickness of the crystal.
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Fig. 4. Transmittance of X-rays around the condition that 6 2 4-, 6 2 8- and 0 6 6-reflected
X-rays all in Laue geometries are simultaneously strong. ∆ω and ∆ϕ are angular deviations
around [2 1 1] and [0 1 1] axes from the exact four-beam condition.

The second terms β(0) and β(1) in the left side of (14) are angular deviations from the exact

n-beam condition. Two-dimensional rocking curves are obtained as shown in Fig. Fig. 4 by
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calculating
∣∣∣D(l,m)

j (exit)
∣∣∣2 (

nz · sj
)
/
(
nz · s0

)
as the intensities of the jth numbered X-ray beam.

(nz · sj) / (nz · s0) is the correction term for taking into account the difference in the area of the

cross section for the X-ray beams. j = 0 in the case of Fig. 4.

When the jth numbered X-rays are reflected in the Bragg geometry, the boundary condition

should be given to be
∑2n

k=1 α
(l)
k D

(m)
j,k exp

(
− i2πξkTz

)
= 0 such that the summation of the

amplitudes is zero.

In the present author’s and his coauthors papers published in 2019 (Okitsu et al., 2019b;

Okitsu et al., 2019a) report pinhole topograph images obtained by fast Fourier-transforming

the solution of the E-L theory. This method was developed by Kohn & Khikhlukha (Kohn

& Khikhlykha, 2016) and by Kohn (Kohn, 2017). They reported computer-simulated pinhole

topographs for a symmetric six-beam case. The present author and his coauthors extended this

method such as to deal with a 18-beam case in which 18 reciprocal lattice nodes do not exist on

an identical circle in the reciprocal space. Here, let the location vector on the exit surface rexit

be described as follows:

rexit = xexitex + yexitey + Tznz. (48)

Further, in reference to Fig. 1, the following equation is obtained:

−−−−→
P′′
1La0 = ∆kxex +∆kyey. (49)

The X-ray amplitude D
(m)
j (xexit, yexit) to be calculated by using the fast Fourier transform

(FFT) modulates the wave of exp
(
− i2π

−−−−→
La0Hj · r

)
e
(m)
j . Considering that this amplitude is the

coherent superposition of D(m)
j (∆k), the next equation can be obtained:

D
(m)
j (xexit, yexit) exp

(
− i2π

−−−−→
La0Hj · rexit

)
=

∫ D.S.

∆k
D(m)

j (∆k) exp
[
− i2π

(−−−→
P′
1P

′′
1 +

−−−−→
P′′
1La0

)
· rexit

]
exp

(
− i2π

−−−−→
La0Hj · rexit

)
dS. (50)

Here, let D′(m)
j (∆kx,∆ky) be as follows:

D′(m)
j (∆kx,∆ky) =

2n∑
k=1

α
(l)
k D

(m)
j,k (∆k) exp

(
− i2πξ′′′k Tz

)
, (51)

where,
−−−−→
P′
1,kP

′′
1 = ξ′′′k nz.
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23∑2n
k=1 in (51) has been obtained by extracting from the integration in the right side of (50).

By substituting (51) into (50) and considering (48) and (49), the following equations can be

obtained:

D
(m)
j (xexit, yexit)

=

∫ D.S.

∆k

2n∑
k=1

α
(l)
k D

(m)
j,k (∆k) exp

(
− i2πξ′′′k Tz

)
exp

(
− i2π

−−−−→
P ′′
1 La0 · rexit

)
dS (52a)

=

∫
∆kx

∫
∆ky

D′(m)
j (∆kx,∆ky) exp

[
− i2π

(
∆kxxexit +∆kyyexit

)]
d∆kyd∆kx. (52b)

The above equation (52) is a standard two-dimensional Fourier transform. The X-ray amplitude

D
(m)
j (xexit, yexit) can be obtained by fast Fourier-transforming D′(m)

j (∆kx,∆ky) defined by (51).

4. Experimental

4.1. Phase retarder system

The experiments to obtain 4-, 5-, 6- and 8-beam X-ray pinhole topographs were performed at

BL09XU of SPring-8 by using the synchrotron X-rays. They were monochromatized to 18.245

keV by using the water-cooled diamond monochromator. The polarization state of the inci-

dent X-rays was controlled by using ‘the rotating four-quadrant phase-retarder system’ (Okitsu

et al., 2006; Okitsu et al., 2012). There were previous states before developing this polariza-

tion control system i.e. ‘the two-quadrant X-ray phase retarder system’ to compensate for the

off-axis aberration (Okitsu et al., 2001) and ‘the four-quadrant X-ray phase retarder system’ to

compensate for both the off-axis and chromatic aberrations (Okitsu et al., 2002). These were

invented, designed and manufactured by the present author. The experimental estimations were

performed by the present author and Ueji to obtain the excellent results at the Photon Factory

of KEK. These systems were further improved as shown in Figs. 5 and 6 such as to rotate around

the optical axis to generate arbitrary polarized X-rays.
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Fig. 5. Schematic drawing of the ‘rotating four-quadrant phase retarder system’ (reproduction
of Fig. 3 in Okitsu et al. (2006) (Okitsu et al., 2006)).

Fig. 6. Photograph of the ‘rotating four-quadrant phase retarder system’ (reproduction of Fig.
3 (b) in Okitsu et al. (2012) (Okitsu et al., 2012)).
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The transmission-type phase retarder (Hirano et al., 1991; Ishikawa et al., 1991; Hirano et al.,

1992; Ishikawa et al., 1992; Hirano et al., 1993; Hirano et al., 1995; Giles et al., 1994a; Giles

et al., 1994b) was innovative polarization-controll system. This can generate uniform phase shift

between σ- and π-polarized X-rays compared with the reflection-type phase retarders (Hart,

1978; Annaka et al., 1980; Annaka, 1982; Golovchenko et al., 1986; Mills, 1987). Nevertheless,

there was a problem of inhomogeneity (aberrations) of the phase shift owing to the angular

divergence and energy spread of the incident X-rays. However, further homogeneous value of

phase shift can be obtained by overlapping the phase retarder crystals such that the planes

of incidence of them are inclined by 45◦ and 225◦ from the horizontal plane (two-quadrant

system) (Okitsu et al., 2001) and by 45◦, 135◦, 225◦ and 315◦ (four-quadrant system) (Okitsu

et al., 2002). The two- and four-quadrant phase retarder system are particularly effective in the

high energy region since the large value of total thickness of the diamond crystals can decrease

the residual ununiformity of phase shift for σ- and π-polarized X-rays.

Fig. 5 is a schematic drawing of the phase retarder system. Fig. 6 is its photograph. This system

consists of PRn
(
n ∈ {1, 2, 3, 4}

)
. These are [1 0 0]-oriented diamond crystals whose thickness

are 1.545, 2.198, 1.565 and 2.633 mm and used in the vicinity of the angles to give 1 1 1 reflection

in an asymmetric Laue geometry. How to control this system has been described in detail in the

paper published in 2006 by the present author and his coauthors (Okitsu et al., 2006).

In the three-, 12- and 18-beam pinhole topograph experiments, the horizontally polarized

monochromatized synchrotron X-rays were incident on the crystal without using the phase

retarder system. The photon energy for the three-beam case was 18.245 keV. That for 12- and

18-beam cases was 22.0 keV.
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Fig. 7. A schematic drawing of the goniometer on which the sample crystal was mount (repro-
duction of Fig. 7 in Okitsu et al. (2006)) (Okitsu et al., 2006)].

4.2. Silicon crystals uses as sample crystals and their position angle adjustment

Fig. 7 was reproduction of Fig. 7 in the paper published by the present author and his coau-

thors in 2006 (Okitsu et al., 2006). The sample crystals used in the n-beam pinhole topograph

experiment for n ∈ {3, 4, 5, 6, 8, 12, 18} were [1 1 1]-oriented floating zone silicon crystals with

high purity and high resistance. The thicknesses of the sample crystals were 10.0 mm in 12- and

18-beam cases and 9.6 mm in the other cases. The sample crystals were mounted on a goniometer

that has four axes of χ, ϕ, ω and θ. Their angles were controlled as shown in Fig. 7. 0 0 0-forward

diffracted and two reflected beam intensities were monitored with PIN photodiodes. The angles

of the goniometer were controlled such that their intensities have maximum value. The positions

of the diodes were adjusted such that the laser beam is incident on the detector. Before that, the

rotation angles of the axes of the goniometer were calculated such as to reflect the laser beam in

the beam direction of the reflected X-rays. It is impossible to adjust the positions of the diodes

whose detection area was 15× 15 mm such that the reflected X-rays were incident on them.
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The dimension of the incident X-ray beam was set to be 25× 25µm with a four-quadrant slit

system placed upstream of the phase retarder system. N pinhole topograph images of forward

diffracted and reflected X-rays were simultaneously taken on the imaging plate set behind the

sample crystal.

5. Results of the experiment and computer-simulation

Fig. 8. [E(a)] and [S(a)] are experimentally obtained and computer-simulated three-beam X-
ray pinhole topographs with an incidence of horizontal-linearly polarized X-rays whose photon
energy was 18.245 keV. [E(b)] and [S(b)] are 0 4 4 reflected X-ray images enlarged from [E(a)]
and [S(a)], respectively (reproduction of Fig. 5 in Okitsu et al. (2012)(Okitsu et al., 2012)).
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5.1. Three-beam case

Figs. 8 [E(a)] and 8 [S(a)] are the experimentally obtained and computer-simulated images of

0 0 0-forward-diffracted, 0 4 4-reflected and 4 0 4-reflected X-ray topographs (Okitsu et al., 2012).

Figs. 8 [E(b)] and 8 [S(b)] are enlargements of 0 4 4-reflected X-ray images of Figs. 8 [E(a)] and

8 [S(a)] Fine fringe regions (FFR(1)), (FFR(2)) and Y-shaped bright region (Y BR) indicated

by arrows in Fig. 8 [S(b)] are found also in Fig. 8 [E(b)], which shows the excellent agreement

between the computer-simulated and experimentally obtained results.
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Fig. 9. [E(x)] and [S(x)] (x ∈ {a, b, c}) are experimentally obtained and computer-simulated
four-beam X-ray pinhole topographs with an incidence of +45◦-inclined-linearly, −45◦-
inclined-linearly and right-screwed-circularly polarized X-rays whose photon energy was
18.245 keV (reproduction of Fig. 6 in Okitsu et al. (2012)(Okitsu et al., 2012)).
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5.2. Four-beam case

Figs. 9 [E(x)], 9 [S(x)] (x ∈ {a, b, c}) are experimentally obtained and computer-simulated

images of 0 0 0-forward diffracted, 6 2 4-, 6 2 8- and 6 2 8-reflected X-rays. (a), (b) and (c)

are different from each other in polarization state of the incident X-rays. These were obtained

for (a): +45◦-inclined linear polarization, (b): −45◦-inclined linear polarization and (c): right-

screwed circular polarization when viewed from the downstream direction.
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Fig. 10. [E(x)] and [S(x)] (x ∈ {a, b, c}) are enlargements of 6 2 8 reflected X-ray images in Fig.
9 [E(x)] and [S(x)] (reproduction of Fig. 7 in Okitsu et al. (2012)) (Okitsu et al., 2012)].

Figs. 10 [E(x)] and 10 [S(x)] (x ∈ {a, b, c}) are enlargement of 6 2 8-reflected X-ray images

in Figs. 9 [E(x)] and 9 [S(x)] (Okitsu et al., 2012). Fine Fringe Region (FFR(1)) can be found

both in Figs. 10 [E(a)] and 10 [S(a)]. Fine Fringe Region (FFR(2)) can be found both in Figs.
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10 [E(x)] and 10 [S(x)] (x ∈ {a, b, c}). Sharp lines [Knife Edge Line (KEL)] are found in all

figures. These lines found in Figs. 10 [E(a)] and 10 [S(a)] are dark in comparison with Figs.

10 [E(b)] and 10 [S(b)]. In the cases of Figs. 10 [E(c)] and 10 [S(c)] intensities of these lines

are intermediate between the cases of (a) and (b). [Pattern like Fish Born (PFB)], [Arched

Line (AL)] and [Bright Region (BR)] are not found in Figs. 10 [E(a)] and 10 [S(a)]. However,

they are found in the cases of [E(b)], [S(b)], [E(c)] and [S(c)] It has been clarified that the

computer-simulated and experimentally obtained pinhole topograph images coincide with each

other when the polarization state used in the experiment or assumed in the computer simulation

agreed with each other.

Intensity ratio between the horizontally and vertically polarized X-rays is the same for (a),

(b) and (c). However, there are difference in phase between the amplitudes of horizontally and

vertically polarized X-rays. This difference in phase caused to the distinct difference in the

topograph images.

Figs. 4 (a), 4 (b) and 4 (c) are rocking curves of the forward-diffracted X-ray intensity cal-

culated based on the E-L theory under the assumptions of different polarization states of the

incident X-rays:, (a) +45◦ and (b) −45◦-inclined linear polarization and (c) right-screwed circular

polarization.

∆ω and ∆ϕ are angular deviations around axes of [2 1 1] and [0 1 1] directions, respectively,

from the exact four-beam condition. Enhancement of the X-ray intensities are found at regions

indicated to be ‘6 2 4’, ‘6 2 8’ and ‘0 6 6’. These were caused by the Borrmann effect (amorous

transmission) (Borrmann, 1965). Where these enhanced regions cross with each other to satisfy

the four-beam condition, further enhancement of the forward-diffracted intensities owing to

super Borrmann effect (Borrmann & Hartwig, 1965). The enhancement of ‘6 2 8’ found in Fig.

4 (a) is relatively small in comparison with that found in Fig. 4 (b). In Fig. 4 (c), the situation

is intermediate between them. The Bragg angle of 6 2 8 reflection for X-rays of 18.245 keV is

39.64◦. Then, the polarization factor for π polarization [cos(2×39.64◦)] is calculated to be 0.186

that is a relatively small value in comparison with that for σ polarization. Then, −45◦-inclined

linear polarization for 6 2 8 reflection is almost π polarization, from which the relatively small
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enhancement of 6 2 8 can be explained. The intensity of KEL depends on the polarization state

of the incident X-rays for the same reason.

Fig. 11. [E(a)] and [S(a)] are experimentally obtained and computer-simulated five-beam X-
ray pinhole topographs with an incidence of vertical-linearly polarized X-rays whose photon
energy was 18.245 keV. [E(b)] and [S(b)] are 5 5 5 reflected X-ray images enlarged from [E(a)]
and [S(a)] (reproduction of Fig. 8 in Okitsu et al. (2012)(Okitsu et al., 2012)).

5.3. Five-beam case

There are cases in which five reciprocal lattice nodes simultaneously exist on a circle in the

reciprocal space as shown in Fig. 1 of the paper published by the present author and his coauthors

(Okitsu et al., 2006). Fig. 11 [E(a)] and 11 [S(a)] are experimentally obtained and computer-

simulated five-beam pinhole topographs. The vertical-linearly polarized X-rays that were con-

verted from the horizontal-linearly polarized synchrotron X-rays. Figs. 11 [E(b)] and 11 [S(b)]
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are enlargements of 5 5 5-reflected images (Okitsu et al., 2012). [Knife Edge Line (KEL(1),

KEL(2))] and [Harp-Shaped Patten (HpSP )] can be found both in the experimentally obtained

and computer-simulated images.

The directions of KEL(1) and KEL(2) found in Figs. 11 [E(b)] and 11 [S(b)] are parallel to

the direction to tie the topograph images of 5 5 5- and 3 3 3-reflected X-rays. This suggests the

energy exchange between 5 5 5-reflected and 0 0 0-forward diffracted X-rays and between 5 5 5-

and 3 3 3-reflected X-rays. Similar [Knife Edge Line (KEL)] can be found also in three-, four-,

six- and eight-beam topographs.

Fig. 12. [E(a)] and [S(a)] are experimentally obtained and computer-simulated six-beam X-ray
pinhole topographs with an incidence of horizontal-linearly polarized X-rays with a photon
energy of 18.245 keV. [E(b)] and [S(b)] are 0 6 6 and 2 6 4 reflected X-ray images enlarged
from [E(a)] and [S(a)] (reproduction of Fig. 9 in Okitsu et al. (2012)) (Okitsu et al., 2012)].
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5.4. Six-beam case

In the six-beam case reported by the present author and his coauthors (Okitsu et al., 2003;

Okitsu et al., 2006; Okitsu et al., 2011), the topograph images were regular hexagons. However,

in the six-beam case described in the present section, the topograph images are not regular

hexagons.

Fig. 12 shows experimentally obtained and computer-simulated topographs with the incidence

of horizontally polarized X-rays used in the experiment and assumed in the computer simulation

(Okitsu et al., 2012). Figs. Figs. 12 [E(b)] and 12 [S(b)] are enlargements of topographs of 0 6 6-

and 2 6 4-reflected X-rays in Figs. 12 [E(a)] and 12 [S(a)]. [Knife Edge Line (KEL(1)) and

(KEL(2))] and [Hart-Shaped Pattern (HSP )] can be found both in images experimentally

obtained and computer-simulated.

In the cases of six-beam pinhole topographs whose shapes are regular hexagons, circular

patterns that suggest the existence of cone-shaped path of energy flow. However, such circular

patterns cannot be found in Fig. 12.
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Fig. 13. [Sx(T-T)], [Ex], and [Sx(E-L)] (x ∈ {h, v}) are the T-T simulated, experimentally
obtained and E-L&FFT simulated eight-beam pinhole topographs for horizontally (x = h)
and vertically (x = v) polarized incident X-rays [reproduction of Fig. 5 in Okitsu et al. (2019)]

5.5. Eight-beam case

Fig. 13 shows eight-beam pinhole topographs whose reflection indices are as shown in Fig. 13

[Sh(T-T)] (Okitsu et al., 2012; Okitsu et al., 2019b).

Fig. 13 [Ex] (x ∈ {h, v}) show the experimentally obtained pinhole topographs obtained

with the incidence of horizontally polarized (x = h) and vertically polarized (x = v) X-rays

(Okitsu et al., 2012; Okitsu et al., 2019b). The horizontally polarized X-rays were obtained not

by removing the phase-retarder crystals from the X-ray path but by reversing the sign of phase

shift given by the diamond crystals that reflect the incident X-rays in the directions of the

odd-numbered quadrant and the even-numbered quadrant directions.
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Fig. 14. Geometry of the eight-beam pinhole topography. xc, yc, and zc drawn on the upper right
corner are unit vectors in the directions [2 1 1], [0 1 1], and [1 1 1], respectively [reproduction
of Fig. 1 in Okitsu et al. (2019)] (Okitsu et al., 2019b).

Figs. 13 [Sx(T-T)] are computer-simulated pinhole topographs for the incidence of horizontally

polarized (x = h) and vertically polarized X-rays obtained by solving the n-beam T-T equation

(T-T simulation). However, Fig. 13 [Sx(E-L)] are obtained by fast Fourier-transforming the

calculated X-ray amplitudes based on the E-L theory (E-L&FFT simulation). Fig. 14 (a) shows

the geometrical relation of the crystal shape and the X-ray path. The E-L FFT simulation was

performed under the assumption of geometry as shown in Figs. 14 (b) and 14 (c) at first. Then,

after removing the parts of α2 and β2, the parts of (α1) and (β1) were calculated separately.

Figs. 16 (α1) and 16 (β1) were linked to obtain Fig. 15 [Sv(E-L)]. The downward surface normal

of the crystal in the cases of Figs. 14 (b) and 14 (c), are mutually perpendicular to each other.

The important factor when considering the E-L&FFT simulation for such a complex geometry

as shown in Fig. 14 (a), are that the plane waves consisting of the incident X-rays should be
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in phase at the incidence point on the crystal. Further, the distances of the incidence point of

X-rays from the edge of the crystal should be strictly measured i.e. horizontally 16.5 mm and

vertically 9.6 mm [see Figs. 14 (a), (b) and (c)]. Detail of the E-L&FFT simulation has been

described in a paper published in 2019 (Okitsu et al., 2019b).

Fig. 15. Enlargements of the 0 0 0 forward-diffracted images in Fig. 13 (reproduction of Fig. 6
in Okitsu et al. (2019)) (Okitsu et al., 2019b)].
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Fig. 16. (α1) and (β1) are computed separately under the assumption of vertically polarized
incident X-rays. These figures have been computed by projecting intensities of the 0 0 0
forward-diffracted X-rays on the exit planes α1 and β1 in Fig. 14 (a) on the imaging plate
whose surface was normal to the [1 0 0] direction. X-ray intensities of α2 and β2 in Figs.
14 (b) and 14 (c) have been erased (reproduction of Fig. 8 in Okitsu et al. (2019)(Okitsu
et al., 2019b)).

Figs. 15 [Sx(T-T)], 15 [Ex] and 15 [Sx(E-L)] (x ∈ {h, v}) are enlargement of topograph images

of 0 0 0-forward diffracted X-rays in Figs. 13 [Sx(T-T)], 13 [Ex] and 13 [Sx(E-L)], respectively.

In Fig. 15 [Eh] that was experimentally obtained, [Harp-Shaped Pattern (HpSP )], [Nail-

Shaped Pattern (NSP )] and [Nail-Shaped Pattern (NSP )] are found. These patterns are found

also in Figs. 15 [Sh(E-L)], and 15 [Sh(T-T)].

[Knife Edge Line (KEL)] as found in Fig. 15 [Sh(T-T)] is not found in Figs. 15 [Eh] and

[Sh(E-L)]. When calculating [Sh(T-T)], Non-zero amplitude of incident X-rays only at the inci-

dence point of X-rays was given as the boundary condition of Dirac’s delta function. This bonday

condition means the assumption that X-rays with infinite angular divergence are incident on the

crystal. KEL is a sharp line that needs plane wave components whose directions of propagation

are far different from the n-beam condition. This bondar condition is given in the computer

simulation to obtain [Sh(T-T)]. However, the angular divergence of the incident X-rays practi-

cally used in the experiment to obtain the image of [Eh] is finite. When calculating [Sh(E-L)],
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the amplitude of the incident X-rays whose angular deviation from the exact n-beam condition

is a finite range. This is considered to be the reason for that KEL is not observed in [Eh] and

[Sh(E-L)].

Also in Figs. 15 [Ev], 15 [Sv(T-T)] and and 15 [Sv(E-L)], vertically polarized incident X-rays

were used in the experiment or assumed in the simulation, HpSP can be found. However, the

intensity is weak in comparison with [Sh(T-T)], [Eh], and [Sh(E-L)].

In this eight-beam case, the time for the E-L&FFT simulation with parallel calculation using

24 cores was ∼8 minutes (about 100 times as fast as the T-T simulation). However, it cannot

be concluded that the E-L&FFT is more excellent unconditionally as compared with the T-

T simulation. The calculation time of the E-L&FFT simulation is constant not depending on

the thickness of the crystal. On the other hand, that of the T-T simulation is proportional to

the third power of the crystal thickness since the three-dimensional scanning in the Borrmann

pyramid is need for the T-T simulation. Then, for the crystal whose thickness is 1.0 mm, the

T-T simulation is 10 times as fast as compared with the E-L&FFT simulation.

5.6. Twelve-beam case

The present author recognized that the largest number of reciprocal lattice nodes that exist

on a circle in the reciprocal space is twelve for silicon crystal before publishing the present

paper. On the other hand, he noticed that sixteen reciprocal lattice nodes exist on a circle in

the reciprocal space. However, the sixteen-beam case is not described in the present paper.
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Fig. 17. [E(a)] and [S(a)] are experimentally obtained and computer-simulated twelve-beam X-
ray pinhole topographs with an incidence of horizontal-linearly polarized X-rays whose photon
energy was 22.0 keV. [E(b)] and [S(b)] are 2 4 2 reflected X-ray images enlarged from [E(a)]
and [S(a)] (reproduction of Fig. 12 in Okitsu et al. (2012)(Okitsu et al., 2012)).

Figs. 17 [E(a)] and 17 [S(a)] show twelve-beam pinhole topogpraphs experimentally obtained

and computer-simulated based on the n-beam T-T equation (Okitsu et al., 2012). The horizon-

tally polarized synchrotron X-rays monochromatized to be 22.0 keV were directly incident on

the silicon crystal. The indices of reflections are as shown in figures. Figs. 17 [E(b)] and 17 [S(b)]

are enlargements of 2 4 2-reflected images in Figs. 17 [E(a)] and 17 [S(a)].

[Very Bright Region (V BR)], [‘V-Shaped’ Pattern (V SP )], [Central Circle (CC)] and [‘U-
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Shaped’ Pattern (USP )] in Fig. 17 [S(b)] are also found in the experimentally obtained image

in Fig. 17 [E(b)].
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Fig. 18. (a) Experimentally obtained and (b) E-L&FFT simulated 18-beam pinhole topographs.
(b) was obtained by the E-L&FFT simulation under an assumption of an incidence of X-rays
with a photon energy E = 21.98415 keV (∆E = E − E0 = −0.25 eV, where E0 = 21.98440
keV) (reproduction of Fig. 3 in Okitsu et al. (2019)(Okitsu et al., 2019a)).
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Fig. 19. Six reciprocal lattice nodes are on a red (smaller) circle in reciprocal space. Outside of
this circle, a black (larger) circle was observed on which twelve reciprocal lattice nodes were
present. Q is the center of the red (smaller) circle (reproduction of Fig. 4 in Okitsu et al.
(2019) (Okitsu et al., 2019a)).

5.7. 18-beam case

Figs. 18 (a) and 18 (b) are 18-beam pinhole topographs experimentally obtained by using

the synchrotron X-rays and E-L&FFT-computer-simulated (Okitsu et al., 2019a). Fig. 18 (a)

were experimentally obtained by aiming to take six-beam pinhole topograph images with the

synchrotron X-rays at 22.0 keV. However, around the six topograph images that were aimed

to obtained, additional twelve images were found. After careful consideration concerning the

geometry in the reciprocal space, further twelve reciprocal lattice nodes were found in the vicinity

of the surface of the Ewald sphere. The arrangement of 18 (= 6+12) reciprocal lattice nodes can

be drawn as shown in Fig. 19. In reference to this figure, The distances of Hi (i ∈ {0, 1, 2, 3, 4, 5})

and that of Hj (j ∈ {6, 7, · · · , 17}) from the Laue Point La0 are not the same. Therefore,

dynamic change of the 18-beam topograph images were found by changing slightly the photon

energy. When the photon energy was assumed to be 21.98415 keV, good agreement between

the experimentally obtained and the E-L&FFT-simulated pinhole topograph images was found

as shown in Fig. 18. To obtain the E-L&FFT-simulated pinhole topograph images, (17) can

be solved with the procedure described in §3.2. Directly calculated based on (17) were X-ray

amplitude profiles when rotating the crystal. Similarly in the eight-beam case, it should be
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considered that plain wave X-rays that consist of the incident X-rays with the wave front of the

delta function are in phase at the incident point of the X-rays.

It is clear from the reference to Fig. 19 that the Borrmann pyramid as shown in Fig. 2

(b) cannot be defined for this 18-beam case. However, the T-T simulation is not completely

ineffective. (40) can be applied to the n-beam case for plane-wave incidence. Difference equation

(45) derived from (40) can be The amplitude profile calculated by solving (45) can be fast

Fourier-transformed to obtain the n-beam topograph images used to simulate the n-beam case

even when n = 18 like this (T-T&FFT simulation). Regarding this method, a separate paper is

in preparation.

Fig. 20. Glitch map (simultaneous reflection map) for silicon 2 2 0 reflection. ψ (the ordinate)
is rotation angle (◦) around [1 1 0] axis. The abscissa is X-ray photon energy (eV). ψ is zero
when K000 × K220 is parallel to [0 0 1] direction. K000 and K220 are wave vectors of 0 0 0
transmitted and 2 2 0 reflected X-rays.

6. Concluding remarks

Fig. 20 is a glitch map (simultaneous reflection map) calculated for silicon 2 2 0 reflection. The

abscissa is the photon energy (eV) of the X-rays. The ordinate (ψ) is the rotation angle of the

crystal around [1 1 0] axis. ψ = 0 when K000×K220 is parallel to the [0 0 1] direction. K000 and
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K220 are the wavevectors of 0 0 0-forward diffracted and 2 2 0-reflected X-rays. All red curves

found in the glitches owing to the simultaneous reflections. These are caused by the reciprocal

lattice nodes other than 2 2 0 existing simultaneously on the surface of the Ewald sphere to

beak the two-beam condition.

The consideration on the glitches are important when designing such X-ray optical device

as the monochromator, polarizer, analyzer and/or phase retarder. When scanning the photon

energy e.g. by using the silicon 2 2 0 reflection, The two-beam approximation is broken at the

photon energy where reciprocal lattice nodes whose indices are other than 2 2 0 exist on the

surface of the Ewald sphere to cause the glitches (defects). In reference to Fig. 20, it can be found

that the density of glitches is higher in the heigh-energy region compared with the low-energy

region.

When an energy-scanning experiment is done by using the X-ray optical device, the value of

ψ can be adjusted such that threre is no reciprocal lattice node causing the two-beam approxi-

mation in the vicinity of the surface of Ewald sphere In the energy ranges bellow 10 keV or so,

such energy scan experiments are usually done by eliminating the glitches. However, it becomes

difficult to eliminate the glitches whose density is proportional to the third power of the pho-

ton energy in the energy range higher than 20 keV. X-rays whose intensity is extremely high,

are available at experimental stations of the third-generation synchrotron radiation sources.

However, the X-ray optical devices cannot be designed only based on the two-beam dynamical

diffraction theories in such a high energy range where the two-beam approximation is always

broken. It is considered to be necessary to design the X-ray optical devices working in the high

energy ranges based on the n-beam X-ray dynamical theories described by (19) and/or (34b).

Simultaneously, advanced technique becomes necessary to control two or three axes e.g. θ and/or

ψ of the goniometer on which the crystal devices are mount.

On the other hand, the n-beam effect cannot be ignored also when the two-beam approxima-

tion is always broken due to the large size of crystal lattice e.g. in the protein crystal structure

analysis. Since the late 1980s, the use of two-dimensional detector generalized and are becoming

more sophisticated in the crystal structure analysis. Many diffraction spots; several dozen even
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in the cases of small molecular crystals and several hundred those are found in the cases of

protein crystals, are simultaneously found in general. When seeing such situations, it is difficult

to consider that the two-beam approximation is not broken. such cases where the two-beam

approximation is broken even in the small molecular crystals, are well known as the Renninger

effect (Renninger, 1937). In the case of protein crystals, it is rare that the reliability factor (R-

factor) evaluated after the determination of the molecular structure is less than 10%. Even if

the R-factor is evaluated to be 10%, it means the weighted discrepancy up to 20% between the

X-ray diffraction intensities experimentally observed and calculated based on the kinematical

theory from the determined molecular structure.

The present author has a hypothesis concerning the too large values of the R-

factor for protein crystals that this problem is caused by the bankruptcy of the two-

beam approximation due to the large density of reciprocal lattice nodes compared

with the cases of small-molecule crystals. If the crystal structure factor Fc(h) for

h reflection were estimated by using the n-beam theory taking into account the

reciprocal lattice nodes in the vicinity of the surface of the Ewald sphere to be

compared with those measured by the experiment Fo(h), the R-factor might be

decreased dramatically. If that is the case for protein crystals, the crystal structures

(and the phase problem) for protein crystals become to be solved by using the n-

beam dynamical theory in place of the two-beam (kinematical) theory.

In Kato’s book published in 1995, there is a description [in Japanese] as follows: When

overviewing the history pf the X-ray diffraction in crystals, the backburn of the dynamical

theory has been established by Darwin (1914) and by Ewald (1917) just after the discovery of

the phenomenon of X-ray diffraction by von. Laue. The kinematical diffraction theory could be

felt safe to use since its foundation has been given by their dynamical theories.

The present author had a lot of respect for Kato who passed away in 2002. However, he

untouched almost at all the n-beam diffraction cases. In 1997, the present author asked him

about the reason. He answered that he thought the solution of the dynamical theory cannot be

obtained when Laue and Bragg geometries are mixed. However, the present author has already
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obtained the numerical solution of the T-T dynamical theory for a three-beam case when Laue

and Bragg geometries were mixed. When telling him about this, he seemed to be confused.

Is it can be said that we cannot feel safe to use the kinematical theory based on the two-beam

approximation when it is clarified to be broken ?

In 1949, Lipscomb suggested (Lipscomb, 1949) that the phase information of the crystal struc-

ture factor can be extracted from the X-ray diffraction profile in principle. In the introduction

of the famous article published by Collela in 1974 (Colella, 1974), the purpose of the study was

to determine the phases of crystal structure factor by referring the Lipscomb’s article. However,

this has not been realized even today.

The phase problem in protein crystallography has been overcome mainly by using the heavy

atom replacement and/or the method to replace methionine (one of the 20 amino acids included

in molecules of the proteins) with selenomethionine that has selenium atom in place of sulfur

(Hendrickson et al., 1989) based on the two-beam approximation. The molecular replace methods

are usually used when the similar or partial structures of the molecule have been determined

by using the above-mentioned phasing methods. However, the phase determination of native

protein crystals using the anomalous dispersion of sulfur is being surveyed due to its advantage

without replacement.

When the molecular structures of protein crystals are obtained based on the

n-beam theory in the future, the phases of the crystal structure factors might be

determined only by indexing the diffraction spots simultaneously recorded on the

two-dimensional detector.

It is impossible to realize the three-beam case for protein crystals whose density of reciprocal

lattice nodes are extremely high. However, the n-beam Ewald-Laue (E-L) dynamical theory as

described in (19) can deal with the cases where the n-reciprocal lattice nodes not on a circle exist

in the vicinity of the surface of the Ewald sphere. The 18-beam pinhole topography is such a

case. The 18 reciprocal lattice node not on a circle in the reciprocal space but exist in the vicinity

of the surface of the Ewald sphere as shown in Fig. 19 has been computer-simulated and agreed

well with the experimental result as shown in Fig. 18 (b). The n-beam T-T equation described
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as (34b) and/or (38) has been derived by Fourier-transforming the E-L theory (18) and/or (19).

These can numerically be solved by taking into account the existence of all reciprocal lattice

nodes in the vicinity of the surface of the Ewald sphere. The present author is now developing

the computer program to solve the n-beam E-L theory described as (19) and n-beam T-T theory

as (34b) and/or (35) for n ∼ 100. It will be time-consuming.

The abilities of computers are rapidly being improved in all cases about calculation speed,

memory capacity and hard disk capacity The quantum computer may be realized in the future.

These situations are important when considering the perspective of the n-beam theory. The

present author will continue to study on the computer simulation of the n-beam X-ray diffraction

with the equivalence in mind between the E-L and T-T dynamical theories.
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Synopsis

X-ray dynamical theories for multiple-diffraction (n-beam) cases are described with both the Ewald-Laue
and Takagi-Taupin formulations. The equivalence between them is explicitly clarified. They have been
extended such as to be applicable to n-beam cases in which n reciprocal lattice nodes in the vicinity of
the surface of the Ewald sphere give simultaneous reflections whose intensities cannot be ignored. Two
hypotheses regarding the too large values of R-factors in protein crystallography are presented i.e. i)
the R-factors can be decreased dramatically by estimating the structure factor Fc based on the n-beam
theory in place of the conventional two-beam kinematical theory, and then ii) the phases of the structure
factors might be determined only by indexing the simultaneous reflection and applying the ‘perfect crystal
approximation’.
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