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Numerically Simulated and Experimentally Obtained
X-Ray Section Topographs of a Spherical Strain Field
in a Floating Zone Silicon Crystal
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An undoped floating zone (FZ) silicon crystal has been investigated by synchrotron X-radiation section topography
with high-order reflections up to 14 14 0. Numerically simulated topographs based on the Takagi-Taupin equations were
in good agreement with experimental distorted patterns when a spherical strain field was assumed in the crystal. The
volume change of the lattice caused by the strain center was estimated to correspond to a sphere with a radius of 10 um.
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§1. Introduction

Recently, increasing integrations of electronic devices
on silicon wafers have given rise to growing demands for
the characterization of microdefects in silicon crystals.

In previous papers of the Toyama University group,'™
the authors reported the Pendellosung fringe method by
X-ray section topography for characterizing oxygen-in-
duced microdefects in heat-treated Czochralski-grown
(CZ) silicon crystals. In the cases of refs. 1-3, since
microdefects were distributed with very high density
(10’-10"/cm® and sizes of defects were very small
(several hundreds to one thousand &ngstroms),individual
defects were not detectable with topographic resolution
while strain fields elongating spacings of Pendellosung
fringes could be dealt with statistically.*® In ref. 3, the
authors reported the synchrotron X-radiation section
topography with high-order reflections improving the ac-
curacy of the Pendellosung fringe method. It was also
pointed out that high-order reflection section topography
was effective for detecting very faint strain fields which ir-
regularly disturbed Pendelldsung fringes. Such faint
strain fields could not be detected by the conventional sec-
tion topography with low-order reflections. The present
paper gives an example of such distorted topograph pat-
terns interpreted with a simple model of strain field
caused by a single microdefect.

For detecting individual microdefects in silicon
crystals, several special techniques of X-ray topography
have been reported. Chikawa et a/.? introduced the weak
beam method in X-ray topography. They successfully ob-
served microdefects in an as-grown floating zone (FZ)
silicon crystal with reduced background of dynamical
diffraction by the kinematical image technique (KIT).

*Present address: Isobe R&D Center, Shin-Etsu Handotai Co., Ltd.,
Isobe, Annaka, Gumma 379-01.
**Present address: LSI Research and Development Laboratory,
Mitsubishi Electric Corporation, Itami, Hyogo 664.

KIT lead Renninger” to the idea of plane-wave
topography with off-Bragg weak beam conditions, and
lead Kohler ef al.® to the gap topograph technique. Ren-
ninger and Kohler er al. also successfully observed
microdefects in as-grown FZ-silicon crystals. Chikaura et
al.” applied the plane-wave topography to a CZ-silicon
crystal thinned to a thickness near the extinction
distance. Ishikawa'!”® developed the ultra-plane wave
topography using the synchrotron radiation, by which
fine concentric circular images caused by microdefects
were observed. Kawado er al.,'” also by the ultra-plane
wave topography, observed microdefects as dot images
in magnetic-field-applied Czochralski-grown (MCZ)
silicon crystals. The experimental technique used in the
present work was intended simply to use high-order reflec-
tions in X-ray section topography, which gives a rela-
tively simple and effective method with the use of syn-
chrotron radiation.

In order to evaluate the observed strain field, the pre-
sent authors used the simulation method in which the
Takagi-Taupin equations>" were numerically in-
tegrated. The first study in which a numerically simulated
section topograph was compared with an experimental
one has been performed by Balibar and Authier, for a
crystal containing a dislocation.'® Later, this simulation
method and its applications were investigated in detail by
Epelboin.'”'®

Although study on strain centers (or pointlike defects)
by the simulation method have long been not published
to the present authors’ knowledge, recently, Green et
al." reported a study on strain centers using the simula-
tion method. Whereas they investigated the case in which
strain centers existed inside the Borrmann fan, in the case
of the present work, a strain center was assumed to exist
outside the Borrmann fan and the magnitude of the
strain field (the proportional constant c in eq. (6)) was es-
timated to be about 10* times greater than those reported
by Green ef al.
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§2. Experimental

The sample used in the X-ray diffraction topography
was a (111)-oriented wafer of as-grown dislocation-free
silicon crystal of high purity, which had been grown in
the [111] direction by the floating zone method. The resis-
tivity of the sample was about 70 @ -cm. Impurity concen-
trations were measured by Fourier transform infrared ab-
sorption spectroscopy, and estimated to be less than the
detection limit (5% 10" atom-cm™?) for oxygen and
about 7 X 10" atom-cm 3 for carbon. The dimensions of
the sample wafer with egg-shaped contours were 36
mm X 32 mm. The surfaces of the sample wafer were
prepared by mechano-chemical etching to remove the
damaged layers induced in the cut-off process from the
ingot. The thickness of the sample was 3.30 mm.

The topographic observation was carried out at the Na-
tional Laboratory for High Energy Physics, using Beam
Line 15B of the Photon Factory. Figure 1 shows the
experimental arrangement for the X-ray diffraction
topography. The polarization of X-rays of Beam Line
15B was horizontal, and the optical system was arranged
so that the directions of the incident and reflected beams
lay on a vertical plane. Therefore the electric polarization
vectors of the beams were normal to the sheet in Fig. 1.

The synchrotron white radiation was monochro-
matized with a silicon (111) asymmetrical
monochromator. The beam reflected by the
monochromator was tuned into a wavelength of 0.4 A.
The asymmetrical factor of the monochromator was 14,
so that the beam incident on the monochromator with a
high angle was reflected with a low take-off angle to be
condensed into a narrow beam. The angular divergence

Scintillation
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Fig. 1. The experimental arrangement of the X-ray section

topography using the synchrotron radiation. The electric polariza-
tion vectors of the incident and reflected beams were normal to the
sheet.
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of the beam from the monochromator was calculated to
be 3.1x 10 °rad with the wavelength being constant,
based on the dynamical theory. The monochromatized
beam passed through an ion chamber of argon gas, with
which the intensity of the beam was monitored. Then the
beam whose width was limited by a slit was incident on
the sample crystal. Reflections 8 8 0, 12 12 0 and 14 14 0
were searched with a scintillation counter. Since the
rotating axis of the goniometer on which the sample was
set, lay on the incident surface of the sample wafer, the
positions of the apexes of the Borrmann fans were iden-
tical for these reflections (see Fig. 6). The intensity of the
wave reflected by the sample crystal in the symmetrical
Laue geometry, was recorded on nuclear plates with 50
pm emulsion thickness.

Table I shows parameters characterizing the reflections
whose indices of scattering vectors & are § 8§ 0, 12120
and 14 14 0, where 6 is the Bragg-reflection angle, x+x
and y-, are the plus and minus A-th Fourier coefficients
of the electric polarizability, c, is the angular width of
the Bragg-reflection, and 7 is the extinction distance. The
expressions of w; and 7 are given by

2C|Xh|
5= , 1
@ sin 260g M
__cos Os @
"TKCIxal? )

where K is the wave number of the incident wave which is
equal to 2.5% 10" m™! for the wavelength of 0.4 A, and
C is the polarization factor which is equal to unity in the
present case.

Each w; is sufficiently small compared with the angular
divergence of the incident beam, whose value is
3.1 1073 rad as described above. Hence, the experimental
condition for each reflection was regarded as the case of
an incident spherical wave.

Table II shows the type of nuclear plate, slit width, ex-
posure time and ring current of the Photon Factory
storage ring during exposure for each reflection in the pre-
sent experiment.

Table I1I. Experimental conditions in which the section topographs
shown in Fig. 4 were taken.
Type of Exposure Storage
Reflection o ear Slit width i ring
index plate (pm) (hours) ca;r;r)lt
880 Iiford L4 50 2.9 128
12120 Ilford G5 100 6.4 175
14140 Iiford G5 100 12.3 221

Table I. Several parameters characterizing each reflection of silicon whose vector A is 8 8 0, 12 12 0 or 14 14 0, for 0.4 A
wavelength at room temperature. g is the Bragg-reflection angle, x., and x_, are the plus and minus A-th Fourier com-
ponents of the electric poralizability, w, is the angular width of the Bragg-reflection, 7 is the extinction distance.

Reflection 6y VX enX—n
index (deg) Real Imaginary w; (rad) 7 (m)
880 24.62 1.11x1077 9.09% 10710 2.93%x 1077 3.28x107*
12120 38.68 3.54x107¢ 4.84x 1071 7.26%x 1078 8.82x107*
14140 46.81 2.09% 1078 3.21x1071° 4.19%x 1078 1.31x107°?
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§3. Simulation

The Takagi-Taupin equations'?'¥ (the T-T equations)
are the fundamental equations of the theory of X-ray
dynamical scattering, which are applicable to the diffrac-
tion in a distorted crystal with an arbitrary incident wave
condition. In the simulations of the present work, the
authors adopted the following type T-T equations with
good symmetry, which were presented by Kato:'”

oD,
=AD,, (3.a)

as,

oD,
—=BD,, (3.b)

aS;,

where A and B are given by

A=—inKCy_,exp (—2nih-u), (4.a)
B=—inKCyx+yexp (+2nih-u), (4.b)

Here, D, and D, are the amplitudes of refracted and
reflected waves, s, and s, are the oblique coordinates in
the direction of refraction and reflection, K is the wave
number of the incident wave, C is the polarization fac-
tor, A is the reflection vector, x+, and x—, are the plus
and minus A-th Fourier coefficients of the electric
polarizability and u is the lattice displacement vector.

One can obtain wave fields in the crystal with arbitrary
strain field by solving eqs. (3.a) and (3.b) under the
boundary condition appropriate for the incident wave
packet. The basic principle for solving the T-T equations
in the present work was the same as that described by
Epelboin in his reviews.!”'® In order to integrate the T-T
equations, the plane of incidence, which is parallel to the
directions of both refraction and reflection, was covered
with fine meshes as shown in Fig. 2. Figure 3 shows a
piece of the wedge cut off by a mesh in Fig. 2. The
amplitudes of the refracted and reflected waves at the
point R are obtained from those at the points P and Q by
solving the following difference equations:

xX—c d+y

=A— .
7 > (5.a)
y—b_Ba+x (5.b)
[ 2 ’

where A and B are given by eqs. (4.a) and (4.b), and the
other parameters are as shown in Fig. 3; that is, @, b, ¢, d
and x, y are the amplitudes of refracted and reflected
waves at the points P, Q and R, and /is the length of PR
which is equal to QR. The length / must be sufficiently
small compared with the extinction distance 7 which
roughly gives the periodic length of Pendellosung oscilla-
tion of X-rays in the crystal.

When a boundary condition is given, the difference
equations (5) can be solved. That is, the amplitudes of
the refracted and reflected waves in the crystal can be
calculated step by step from the amplitudes of the wave
incident on the crystal surface. In the experiments of the
present work, the condition of spherical wave incidence
was satisfied as described in §2. This condition is
equivalent to the situation where the amplitude of the in-
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Incident X-rays
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Surface

Fig. 2. A plane of incidence in the crystal was covered with fine
meshes. One can numerically integrate the difference forms of the T-
T equations (egs. (5.a) and (5.b)) step by step toward the exit surface
of the crystal from the incident surface where the boundary condi-
tion is given.
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Fig. 3. One small wedge cut off from Fig. 2, where a, b, ¢, dand x, y
are the amplitudes of refracted and reflected waves at the points P, Q
and R respectively.

cident wave packet is localized in a sufficiently small
region on the crystal surface compared with the extinc-
tion distance t of each reflection. Therefore, for the
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boundary condition of the incident spherical wave, at
only one point on the incident surface of the crystal, a
value not equal to zero was given for the amplitude of the
refracted wave.

To solve egs. (5), the lattice displacement u in the
crystal is necessary because the parameters A and B de-
pend on u. The present authors assumed that the strain
field was induced by a single strain center in an isotropic
elastic continuum. Then, the lattice displacement vector
u was assumed to be given by

C ~
u Zﬁ r, (6)
where ¢ is the magnitude of the strain field, r is the
distance from the strain center, and 7 is the unit vector of
the direction of r.

When the spherical strain field was assumed in the
simulation to be compared with the experimental pat-
terns, there were three adjustable parameters, that is,
horizontal and vertical coordinates of the strain center
(see Fig. 6), and the magnitude of the strain field ¢ in eq.
(6). The calculations were executed in 500 steps in the
depth direction of the crystal, which divides the crystal
into sufficiently small wedges compared with the extinc-
tion distance 7. The above calculation was repeated from
one plane of incidence to another in the direction of the
height of the beam (normal to the sheet in Fig. 6); then, a
two dimensional pattern was obtained. Until the patterns
best fitted to the experimental results were obtained, the
simulation was repeated over and over again. FACOM-
M360 and IBM-3081 mainframe computers of Toyama
University and NEC-PC9801VX21 personal computer
were used for the calculations. One trial of the simula-
tion took about 20 min of central processing unit (CPU)
time on the mainframe computers and about 20 h on the
personal computer. Calculated intensities of reflected
waves were displayed on the cathode ray tube of the
NEC-PC9801VX21 personal computer with 16 degrees
of brightness and were photographed on Fuji Neopan SS
film.

§4. Results and Discussion

The experimental section topographs were obtained as
shown in Fig. 4. One can observe disturbances in the
lower parts and upper parts of Fig. 4. The present
authors regarded disturbances of the lower parts as
caused by the wax used to mount the sample crystal. The
simulations of the present work were concerned with the
disturbed patterns in the upper regions of the topographs
in Fig. 4. As for 14 14 0 reflection, in Fig. 4(a) one can
observe 4-fold concentric circles and a white band
diagonally crossing the concentric circular pattern. As
for 12 12 O reflection, in Fig. 4(b) one can observe a 2-
fold elliptical spot. As for 8 8 0 reflection, in Fig. 4(c)
one can observe the Pendellosung fringe of the center
which is slightly swelled in the upper region.

Figure 5 shows the best fitted simulation patterns
together with the experimental patterns magnified from
the upper parts of Fig. 4. When the magnitude of the
strain field (the proportional constant ¢ in eq. (6)) was
+4x 107 m?, the simulation patterns best fitted the ex-
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Fig. 4. The experimental section topograph patterns for (a) 14 14 0,
(b) 12 12 0 and (c) 8 8 O reflection. The simulations of the present
work were concerned with the disturbed patterns in the upper
regions.

perimental ones. Figure 6 shows the location of the strain
center determined by the simulation.

As for 14 14 0 reflection, in the simulation patterns
Figs. 5(a) and 5(c), 4-fold concentric circles and a white
band similar to the experimental pattern Fig. 5(b), were
observed. The correspondence was excellent. The present
authors regarded the tilt of the white band in the ex-
perimental pattern Fig. S(b) as caused by the strain field
disturbing the lower parts of Fig. 4. As for 12 12 0 reflec-
tion, in the simulation patterns Figs. 5(d) and 5(f), an
elliptical spot was observed. The ratio of the height of
the spot to the width was similar to that of the experimen-
tal pattern Fig. 5(e). The 2-fold elliptical pattern was,
however, not simulated. As for 8 8 0 reflection, in Figs.
5(g) and 5(i), the Pendellosung fringe of the center was
swelled slightly as found in the experimental pattern Fig.
5(h).

Comparing the topographs of 8 8 0 reflection which
was not significantly distorted, with the topographs of
12 12 0 and 14 14 0 reflections, one can see the great ad-
vantage of higher-order reflection in detecting strain field
in the sample crystal.

Figure 5 shows the simulation patterns for the strain
field of both positive and negative magnitude. Although
the simulated results for positive and negative magnitude
of the strain field were slightly different owing to the ab-
sorption of X-rays in the crystal, the difference was too
small to determine the sign of the magnitude of the strain
field. Thus, it could not be determined whether the strain
center expanded or contracted the surrounding lattice.

The volume change of the lattice caused by the strain
center could be estimated to be the volume of a spherical
shell whose thickness is u(=cr ~?) and radius is , that is,
estimated at 47c corresponding to the volume of a sphere
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Fig. 5.
the magnitude of the strain field in eq. (6).

with a radius of about 10 um.

In order to estimate the accuracy of the above evalua-
tion, the simulation where the magnitude of the strain
field was slightly changed from the best fitted value
4 x 107'* m?, was carried out. Figure 7 shows the results of
the simulation for 14 140 reflection, where the
magnitude of the strain field (the proportional constant ¢
in eq. (6)) was —3x107'*m’ for Fig. 7(a), and

1212 0
Experiment

) 880
(h) Experiment

12120

Simulation

T — —4 x 10——16 m3

2mm

I

()

Simulation
= —4 x 107" m®

|
2mm

The comparison between the experimental and the numerically simulated section topographs. The value of c indicates

—5x 107 m? for Fig. 7(b). The strain center was located at
the same position as that for the best fitted simulation as
shown in Fig. 6. One can observe 3-fold concentric
circles in Fig. 7(a) and 5-fold concentric circles in Fig.
7(b), which were significantly different from the ex-
perimental pattern Fig. 5(b) and the best fitted simulation
patterns Figs. 5(a) and 5(c) where 4-fold concentric
circles were observed. Then one can see the degree of ac-
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curacy in estimating the magnitude of the strain field in
this simulation method.

Although in the present work the simulation was ex-
ecuted on the assumption of a spherically symmetrical
strain field, the actual strain field caused by a single strain
center is not strictly spherically symmetrical owing to the
stress relaxation on the crystal surfaces. For more precise
analysis of the strain field, it is necessary to correct the
spherical strain field with the image forces.

In order to characterize the strain center itself, several
investigations are in progress. It is, however, still unclear
what induced such a big strain field.

Simulation
c=—-3x 10716 m3

____>]2
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Crystal Surface
1.84mm T
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Center l
12 12
12.0 880 880 12120

Fig. 6. The location of the strain center which was determined by the
comparison between the experiment and the simulation.

‘(b)14140

Simulation
2mm

Fig. 7. Numerically simulated section topograph images of the spherical strain field whose magnitude (the value ¢ in eq. (6))
was slightly changed. These patterns were significantly different from the best fitted simulation (Fig. 5(c)) where the

magnitude of the strain field was —4 x 10~ m®.

§5. Conclusions

Distorted patterns were observed in section
topographs of a high-purity FZ-silicon crystal. The pre-
sent authors could detect the strain field owing to the
following two advantages of the synchrotron radiation
section topography over the conventional section
topography. First, a thick (3.3 mm) sample crystal could
be used owing to less absorption of the short (0.4 A)
wavelength X-rays in the crystal. The use of the thick
crystal enabled the present authors to obtain the informa-
tion on lattice strain from a large region of the crystal at
one trial of exposure. Secondly, the high-order reflec-
tions (up to 14 14 0) with low scattering powers could be
used owing to the high intensity of the synchrotron radia-
tion. The higher the order of Bragg-reflection is, the
greater is the sensitivity of the section topograph pattern
to the lattice strain.

In addition, the distorted patterns observed were well
reproduced in the simulations based on the Takagi-

Taupin equations where a spherical strain field was
assumed in the crystal. The strain field was estimated to
cause a volume change in the lattice corresponding to a
sphere with a radius of about 10 pm.
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