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It was pointed out in a previous paper [Okitsu et al. (2006),Acta Cryst.A62, 237–

244] that an n-beam Takagi–Taupin (T–T) equation can be solved for a crystal of

arbitrary shape. The procedure to integrate the n-beam T–Tequation is to let all

the Fourier coefficients of the electric susceptibility be zero at positions inside

the Borrmann pyramid but outside the crystal. The efficiency of this simple

procedure is verified in the present paper by showing qualitative and

quantitative agreements between experimentally obtained and computer-

simulated X-ray six-beam pinhole topographs for a channel-cut silicon crystal.

1. Introduction

The most widely known X-ray dynamical diffraction theory is

the Ewald–Laue (E–L) theory (Ewald, 1917; Laue, 1931) that

can deal with an X-ray wavefield in a perfect crystal in which

transmitted and only one reflected X-ray beams are strong

(the two-beam case). In the late 1960s an X-ray three-beam

dynamical theory based on the E–L formulation that can deal

with the case in which transmitted and two reflected X-ray

beams are strong (the three-beam case) in a perfect crystal was

presented by Hildebrandt (1967), by Ewald & Héno (1968)

and by Héno & Ewald (1968). Colella (1974) developed a

numerical method to solve the n-beam E–L theory and

experimentally demonstrated obtaining phase triplets of

structure factors of a germanium crystal by measuring

diffraction profiles of goniometry in the vicinity of three-beam

conditions.

On the other hand, the Takagi–Taupin (T–T) equation

(Takagi, 1962, 1969; Taupin, 1964) is well known as another X-

ray dynamical theory that can deal with a two-beam X-ray

wavefield in a distorted crystal. The first extension of the T–T

theory to the three-beam case was presented by Thorkildsen

(1987) neglecting the polarization effect. A consideration on

the three-beam T–T equation when analytically solving it

taking into account the polarization effect was given by Larsen

& Thorkildsen (1998). However, it was limited to a special

case that the authors referred to as ‘symmetrical scattering’.

An n-beam T–T equation (n � 12), taking into account the

polarization effect, and a numerical method to solve it were

given for the first time by Okitsu (2003; hereafter denoted

O2003) and Okitsu et al. (2006; hereafter denoted O et al.

2006). They have been verified from qualitative (Okitsu et al.,

2003) and quantitative (O et al. 2006) agreements between

experimentally obtained and computer-simulated six-beam

pinhole topographs for a parallel-plate silicon crystal.

In O 2003 and O et al. 2006 it was also pointed out that the

n-beam T–T equation can be numerically solved for a crystal

with an arbitrary shape. This is an important advantage

compared with the n-beam E–L theory whose solution cannot

directly be obtained for a crystal with a complex shape. In the

present paper it is clarified that the n-beam T–T equation can

be numerically solved for a crystal with an arbitrary shape by

showing qualitative and quantitative agreements between

experimentally obtained and computer-simulated polariza-

tion-dependent six-beam pinhole topographs for a channel-cut

silicon crystal.

2. Computer simulation

The procedure to obtain computer-simulated pinhole topo-

graph images shown in x4 of the present paper is fundamen-

tally the same as that described in x3 of O 2003 and x3 of O et

al. 2006.

Fig. 1 shows the dimensions of the channel-cut silicon

crystal and the position on which X-rays transmitted through a

pinhole were incident such that a six-beam condition was

satisfied. The calculation was performed layer by layer, with

layer thickness Th=3600, scanning the whole region inside the

‘virtual Borrmann hexagonal pyramid’ with Th being 18.2 mm.

Here, Th is the thickness of the crystal shown in Fig. 1. The

values of �hi�hj
in equation (8) of O et al. 2006 were assumed

to be as summarized in Table 1 for a photon energy of

18.475 keV when the middle point between R
ð0Þ
k and Rð1Þ

(k 2 f0; 1; 2; 3; 4; 5g) in Fig. 2(a) of O et al. 2006 was in the

crystal. However, all values of �hi�hj
were assumed to be zero

when the middle point between R
ð0Þ
k and Rð1Þ was in the
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atmospheric region. Since equation (8) of O et al. 2006

contains the term �o explicitly, this procedure is effective in

solving the n-beam T–Tequation for a crystal with an arbitrary

shape.

Each calculation under the assumption of incident hori-

zontal-linearly (LH) and vertical-linearly (LV) polarized

X-rays took about 2 h using 32 CPUs (128 cores) of an SGI

Altix ICE 8400EX supercomputer system. This short

computing time, compared with that in the case of O et al.

2006, is mainly due to the parallelization of program code and

the recent rapid development of supercomputers. A set of

X-ray amplitudes simulated under an assumption of incident

X-rays with an arbitrary state of polarization was obtained by

using the procedure described in the last paragraph in x3 of

O et al. 2006.

The polarization states of incident X-rays for comparison

with the experimental results were assumed as summarized in

Table 2 in order to obtain the computer-

simulated topographs. The procedure for

obtaining the values of �MA and R used

for the simulations is described in a

separate paper (Okitsu, 2011).

The tones of all computer-simulated

images with a pixel size of 50� 50 mm
were tuned using an identical tone curve

using Adobe Photoshop CS4.

3. Experimental

Fig. 2 shows the experimental arrange-

ment at BL09XU of SPring-8 with which

the experimental six-beam pinhole topo-

graphs were obtained. The first-order undulator X-ray beam

was monochromated to 18.475 keV (a wavelength of

0.6711 Å) with a water-cooled silicon monochromator system

giving a twice-bounced 1 1 1 reflection and transmitted

through a slit system of size 100� 100 mm. Then the polar-

ization state of the X-rays was controlled using a four-quad-

rant phase-retarder system (Okitsu et al., 2002) that can be

rotated around the transmitted beam axis (see Fig. 3 in O et al.

2006).

The arrangement of the diamond phase-retarder crystals

was identical with that described using Fig. 3 in x4.1 of O et al.

2006. However, the values of �PR and angular deviations

of the diamond crystals from the Bragg condition ��PRn
(n 2 f1; 2; 3; 4g) were different from those used in the

experiment of O et al. 2006. These values in the present work

are summarized in Table 2. When ��PRn is positive, the n-

numbered-quadrant phase retarder is angularly deviated from

the Bragg angle to the high-angle side by ��PRn. When �PR =

0, the planes of incidence of the first-, second-, third- and

fourth-quadrant phase retarders are inclined by 45�, 135�, 225�

and 315�, respectively. The thicknesses of these ½1 0 0�-oriented
diamond crystals were 1.545, 2.198, 1.565 and 2.633 mm,

respectively. �PR is positive when the �PR axis is rotated

counterclockwise as viewed from the downstream direction.

�’total, �MA and R are the total phase shift given by the phase

retarder system, the inclined angle of the major axis, and the

ellipticity of the practically generated polarization state of the

X-rays by the phase retarder system that are calculated based

on a procedure described in a separate paper (Okitsu, 2011).

Then, the X-rays were incident on the position on the

sample crystal shown in Fig. 1. The sample was a floating-zone

silicon channel-cut crystal with a high resistivity (>2000 � cm)

whose surfaces were chemically etched. The goniometer on

which the sample was mounted had four (!, ’, � and �) axes.
The !, ’ and � axes were approximately parallel to the

directions of ½1 �11 1�, ½0 1 1� and ½�22 �11 1� of the sample crystal,

respectively. The � axis was approximately parallel to the

transmitted X-ray beam axis. The � and ! axes were adjusted

such that the ½2 1 �11� direction of the sample crystal was

vertical.

The 0 0 0-forward-diffracted (hereafter referred to as FD)

and 4 4 0- and 4 8 4-transmitted-reflected (hereafter referred
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Table 1
Parameters of X-ray reflection indices of the silicon crystal for a photon energy of 18.475 keV (a
wavelength of 0.6711 Å) calculated by using XINPRO of XOP (version 2.11) (del Rio & Dejus,
1998).

�B is the Bragg reflection angle; jFhj is the absolute value of the crystal structure factor; j�hrj and j�hij
are absolute values of the real and imaginary parts of �h. Here, �h is the hth-order Fourier coefficient of
electric susceptibility of the silicon crystal. �ð�Þ

L and �ð�Þ
L are the Pendellösung distances for � and �

polarization in the two-beam case defined by Authier (2005).

h 2�B (�) jFhj
j�hrj
�106

j�hij
�107

�ð�Þ
L

(mm)
�ð�Þ

L

(mm)

0 0 0 0.0000 114.0007 2.8424 0.1267 23.61 23.61
4 4 0 40.9143 43.5906 1.0992 0.1116 57.20 75.70
4 8 4 74.5101 16.8270 0.4242 0.0866 125.92 471.50
0 8 8 88.6959 12.1786 0.3070 0.0763 156.32 6868.7
�44 4 8 74.5101 16.8270 0.4242 0.0866 125.92 471.50
�44 0 4 40.9143 43.5906 1.0992 0.1116 57.20 75.70

Figure 1
The shape and dimensions (mm) of the silicon crystal used in the
experiment and assumed in the computer simulation. The X-ray beam
(18.475 keV) with dimensions of 100� 100 mm was incident at the
position on the crystal surface shown in the figure. Only at this position
was a non-zero value of the amplitude of the incident X-rays given for
the boundary condition numerically to solve the n-beam T–T equation
(n = 6).
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to as TR) X-ray intensities were simultaneously monitored

using PIN photodiodes PIN000, PIN440 and PIN484. The angular

position for satisfying the six-beam condition was searched for

by rotating the � and ’ axes such that the X-ray intensities

detected by PIN000, PIN440 and PIN484 had maximum values

simultaneously. Then, an imaging plate (IP) was placed 24 mm

behind the exit surface of the crystal to record 0 0 0-FD and

4 4 0-, 4 8 4-, 0 8 8-, �44 4 8- and �44 0 4-TR six-beam pinhole

topograph images simultaneously. The surface of the IP was

perpendicular to the ½1 �11 1� direction of the sample crystal.

The exposure time was 900 s for all the experimental topo-

graph images shown in Figs. 3–5. The images were read by a

Fuji BAS-2500 IP reader with 50� 50 mm pixel size. All

experimental and computer-simulated pinhole topographs in

the present paper are negative images.

4. Results and discussion

Fig. 3 shows (a) experimentally obtained

and (b) computer-simulated six-beam

pinhole topographs using incident LH-

polarized X-rays. An excellent qualitative

agreement between Figs. 3(a) and 3(b) can

be found. This qualitatively validates the

computer algorithm described in x2 of the
present paper to solve the n-beam T–T

equation (4) of O et al. 2006 for a perfect

crystal with a complex shape. Figs. 4 and 5 are enlarged

pinhole topograph images, ½EðxÞ� experimentally obtained and

½SðxÞ� computer-simulated for 0 0 0-FD and 4 4 0-TR X-rays

where x 2 fa; b; c; dg. Figs. 4 ½XðaÞ� and 5 ½XðaÞ� (X 2 fE; Sg)
are enlargements of Figs. 3(a) and 3(b). ½XðbÞ�, ½XðcÞ� and
½XðdÞ� of Figs. 4 and 5 were obtained using incident X-rays

polarized approximately vertical-linearly (LV), approximately

�45�-inclined-linearly (L-45�) and approximately left-

screwed-circularly (CL), respectively, that were generated

with the phase-retarder system or assumed in the simulation.

Precise discussions about the polarization states are given in a

separate paper (Okitsu, 2011). Excellent qualitative agree-

ments in detail between the experimentally obtained and

computer-simulated images can be found. Furthermore,

½XðaÞ�, ½XðbÞ�, ½XðcÞ� and ½XðdÞ� of Figs. 4 and 5 are evidently

different from one another depending on the difference in

polarization state of the incident X-rays. In particular,

conspicuous differences are found between ½XðaÞ� and ½XðbÞ�.
Figs. 6(a) and 7(a) are enlargements of parts ½SðaÞ� and

½SðbÞ� of Fig. 5. The lower curves in (�), (�), (�) and (	) of
Figs. 6 and 7 are cross-section X-ray intensity profiles at the

black horizontal lines �, �, � and 	 in Figs. 6(a) and 7(a). The

upper curves are the corresponding profiles extracted from

parts ½EðaÞ� and ½EðbÞ� of Fig. 5. A quantitative agreement can

be found between computer-simulated and experimentally

obtained intensity profiles in (�), (�), (�) and (	) of Figs. 6 and
7. Characteristic patterns are observed in these figures, i.e. two

fine fringe regions [FFR(1) and FFR(2)], a very bright region

(VBR), and a square region (SqR) surrounded by boundary

lines (BL). A large circle (COut) found in Fig. 6(a) is not

found in Fig. 7(a). However, a small circle (CIn) found in Fig.

7(a) is not found in Fig. 6(a). A concentric circular region

(CCR) found inside COut in Fig. 6(a) is very faint in Fig. 7(a).

Four radial patterns like spikes, Sp(1), Sp(2), Sp(3) and Sp(4),

are extended from CP in Fig. 6(a). On the other hand, only

Sp(1) is found in Fig. 7(a). Faint patterns like clouds, Cl(1),

Cl(2) and Cl(3), floating on the background region (BGR) are

not noise but true signals since they are also found in ½EðxÞ�
and ½SðxÞ� (x 2 fa; b; c; dg) of Fig. 5. Differences are also found

between the experimentally obtained and computer-simulated

topographs, i.e. the diameters of CIn and COut, which are

considered to be caused by slight differences in �hi�hj
between

practical values and values assumed in the simulation.

Figs. 8(a) and 8(b) are computer-simulated pinhole topo-

graphs for a parallel-plate crystal with the same thickness

(18.2 mm) under the assumptions of incident ðaÞ LH- and ðbÞ
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Table 2
�PR and ��PRn ðn 2 f1; 2; 3; 4gÞ are summarized for generating horizontal linear (LH),
approximately vertical linear (LV), approximately �45�-inclined linear (L-45�) and approxi-
mately left-screwed-circular (CL) polarizations with which the experimental pinhole topographs
were recorded.

Intended
polarization �PR (�)

��PR1
(arcsec)

��PR2
(arcsec)

��PR3
(arcsec)

��PR4
(arcsec) �’total=� �MA (�) R

LH 0 26.00 36.96 26.32 44.28 0.000 0.000 0.000
LV 0 14.80 �17.64 14.88 �19.32 0.9027 90.000 0.228
L-45� +22.5 14.80 �17.64 14.88 �19.32 0.9027 �43.507 0.157
CL 0 27.52 �32.80 27.68 �35.92 0.4671 0.000 0.836

Figure 2
Experimental arrangement used to record the pinhole topographs with
the channel-cut floating-zone silicon crystal on the imaging plate 24 mm
behind the sample.
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approximately LV-polarized X-rays. COut and CIn are also

found in Figs. 8(a) and 8(b), which reveal the existence of

cone-shaped energy-flow paths depending on the polarization

state of the incident X-rays.

All computer-simulated pinhole topographs shown in O et

al. 2006 and the present paper were obtained not taking into

account the finite pinhole sizes, 25� 25 mm in O et al. 2006 and

100� 100 mm in the present paper. The present authors

considered that convolution of computer-simulated X-ray

intensities with the apertures of pinholes was not necessary

because the size of the pinhole was sufficiently small compared

with the image sizes of topographs and of the same order of

magnitude as the pixel size (50� 50 mm) of all experimentally

obtained and computer-simulated pinhole topographs.

Several experimental and theoretical works on six-beam

cases can be found over the last four decades (Afanas’ev &

Kohn, 1977; Besirganyan et al., 1984; Kohn & Toneyan, 1986;

Kazimirov et al., 1993). The theoretical parts of these works

were all based on the E–L theory. Kohn & Toneyan (1986)

discussed six-beam diffraction taking into account the source–

crystal–film distance. In the case of the present paper,

however, the distance between the crystal and the imaging

plate (24 mm) was considered to be negligibly small. Further,

the condition of spherical-wave incidence was probably

satisfied in spite of the source–crystal distance over 10 m.

The E–L theory in which the dispersion surfaces can be

defined is very effective for intuitive and qualitative under-
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Figure 3
ðaÞ Experimentally obtained and ðbÞ computer-simulated pinhole
topograph images using incident horizontal-linearly (LH) polarized X-
rays.

Figure 4
Experimentally obtained and computer-simulated pinhole topograph
images of 0 0 0-forward-diffracted (FD) X-rays with the channel-cut
silicon crystal. The incident X-rays for (a), (b), (c) and (d) are polarized
LH, approximately vertical-linearly (LV), approximately �45�-inclined-
linearly (L-45�) and approximately left-screwed-circularly (CL) (see
Table 2 for details), respectively.
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standing of the behavior of X-rays especially in two-beam

cases. Pendellösung distances for � and � polarizations in the

two-beam cases are summarized in the last two columns of

Table 1. Spacings of circular and linear fine fringes observed in

Figs. 6 and 7 are approximately equal to the Pendellösung

distances for the 4 4 0 reflection. The Pendellösung distance

can be clearly understood from the gap between dispersion

surfaces in two-beam cases. In the case of n-beam diffraction,

however, the behavior of X-rays is too complex intuitively to

understand, mainly owing to the polarization coupling effect.

The suppression of absorption by the Borrmann effect in

the two-beam case is observed at the central part of the

bottom of the Borrmann fan. However, Figs. 3, 4 and 8 reveal

that the enhancement of the Borrmann effect (Borrmann &

Hartwig, 1965) took place not at the central region but at a

peripheral region of the bottom of the hexagonal Borrmann

pyramid. If the undulator synchrotron X-rays, not mono-
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554 Kouhei Okitsu et al. � Six-beam pinhole topographs Acta Cryst. (2011). A67, 550–556

Figure 6
(a) Enlargement of Fig. 5 ½SðaÞ� using incident LH-polarized X-rays. The
lower curves of ð�Þ, ð�Þ, ð�Þ and ð	Þ are cross-section X-ray intensity
profiles at the horizontal black lines �, �, � and 	, respectively, in (a).
The upper curves are experimental cross-section profiles corresponding
to the computer-simulated ones. These upper curves were extracted from
Fig. 5 ½EðaÞ�.

Figure 5
Experimentally obtained and computer-simulated pinhole topograph
images of 4 4 0-transmitted-reflected (TR) X-rays with the channel-cut
silicon crystal. The polarization states of incident X-rays for (a), (b), (c)
and (d) are LH, approximately LV, approximately L-45� and approxi-
mately CL (see Table 2 for details), respectively.
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chromated and just transmitted through a pinhole, were inci-

dent on a thick silicon crystal as used in the present experi-

ment, the crystal might work as a transmission-type

monochromator utilizing the super-Borrmann effect. The

polarization state of the pinhole beam extracted from the

bright region of Fig. 5 ½EðaÞ� would be controlled to be iden-

tical to that at the corresponding position of Fig. 5 ½SðaÞ�.
The T–T theory is frequently regarded as a special theory

that can deal with lattice distortion and directly can deal with

spherical-wave X-ray incidence. The T–T and E–L theories

should be used as appropriate for the purpose, based on the

recognition that these theories are equivalent. The T–T

equation describes the X-ray wavefield in real space whereas

the E–L theory describes that in reciprocal space. It can be

considered that, for this reason, the T–Tequation acquired the

significant advantage of dealing with an arbitrarily shaped

crystal, on which the present paper reports for the six-beam

case, in addition to dealing with an arbitrarily deformed

crystal, which is widely recognized.
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Figure 8
Computer-simulated pinhole topographs for a parallel-plate silicon
crystal with a thickness of 18.2 mm for incidence of X-rays (a) LH-
polarized and (b) approximately LV-polarized. The other conditions
assumed are identical to those for the channel-cut crystal.

Figure 7
(a) Enlargement of Fig. 5 ½SðbÞ� using incident approximately LV-
polarized X-rays (see Table 2 for details). The lower curves of ð�Þ, ð�Þ, ð�Þ
and ð	Þ are cross-section X-ray intensity profiles at the horizontal black
lines �, �, � and 	, respectively, in (a). The upper curves are experimental
cross-section profiles corresponding to the computer-simulated ones.
These upper curves were extracted from Fig. 5 ½EðbÞ�.
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5. Conclusion

Excellent qualitative and quantitative agreements were found

between experimentally obtained and computer-simulated

pinhole topographs for a channel-cut silicon crystal. This

validated the computer algorithm for solving the X-ray n-

beam dynamical theory (Okitsu, 2003; Okitsu et al., 2003,

2006) based on the T–T formulation (Takagi, 1962, 1969;

Taupin, 1964) for a crystal with a complex shape.

The characteristic feature of this algorithm is to deal with

the Fourier coefficients of electric susceptibility �hi�hjði; j 2 f0; 1; 2; � � � ; n� 1gÞ in equation (8) of O et al. 2006 as

functions of position. The X-ray wavefield in a crystal of

arbitrary shape can be solved by distinguishing the atmo-

spheric position where �o and �hi�hj
ði 6¼ jÞ are all zero from

the position in the crystal where �o and �hi�hj
ði 6¼ jÞ have finite

values.

The conventional approaches to solving the phase problem

using the n-beam method were all based on the n-beam

dynamical theory described by the E–L formulation.

However, the advantage of the n-beam T–T dynamical theory

that is applicable to a crystal of arbitrary shape over the E–L-

type n-beam theory has been shown in the present work.

The theoretical work and coding of computer programs of

the present work were performed at the High-Power X-ray

Laboratory, Nano-Engineering Research Center, Institute of

Engineering Innovation, Graduate School of Engineering,

The University of Tokyo, Japan. The computer-simulated

pinhole topographs were obtained using the facilities of the

Supercomputer Center, Institute for Solid State Physics, The

University of Tokyo, Japan. Preliminary experiments were

performed at BL15C and ARNE3A of the Photon Factory of

KEK under the approval of the Photon Factory Program

Advisory Committee (Proposal No. 2003G202, 2003G203).

The experimental pinhole topographs shown in the present

paper were obtained at BL09XU of SPring-8 under the

approval of the Japan Synchrotron Radiation Research

Institute (JASRI) (Proposal No. 2004A0330-ND3c-np). The

present work is one of the activities of the Active Nano-

Characterization and Technology Project financially

supported by the Special Coordination Fund of the Ministry of

Education, Culture, Sports, Science and Technology of the

Japanese government. The authors are indebted to Professor

Emeritus S. Kikuta of The University of Tokyo for his

encouragement of the present study and are also indebted to

Dr T. Oguchi of SPring-8 Service Company for his technical

assistance with the experiment.

References

Afanas’ev, A. M. & Kohn, V. G. (1977). Acta Cryst. A33, 178–184.
Authier, A. (2005).Dynamical Theory of X-ray Diffraction, reprinted
with revisions 2004, 2005. Oxford University Press.

Besirganyan, P. A., Gabrielyan, R. T. & Kohn, V. G. (1984). Phys.
Status Solidi A, 85, 349–358.

Borrmann, G. & Hartwig, W. (1965). Z. Kristallogr. 121, 401–409.
Colella, R. (1974). Acta Cryst. A30, 413–423.
Ewald, P. P. (1917). Ann. Phys. 54, 519–597.
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