リガク VariMax Dual

Part 2c CrysAlis^{Pro} と CCP4i2 による解析マニュアル (タンパク質結晶)

Adobe Acrobat Reader DC (無料) での閲覧を推奨

東京大学工学系研究科 総合研究機構 ナノ工学研究センター X線実験室

図0 CCP4i2のウィンドウ

この冊子では、VariMax Dual で取得した、タンパク質結晶の X 線回折強度データから、フリーソ フトウェア、CrysAlis^{Pro} と CCP4 を用いて、分子置換法により分子構造を決定する手順を記述する。 CCP4 は、The Collaborative Computational Project, Number 4 の略称で、多くの専門家がプロ ジェクトを立ち上げ、タンパク質結晶構造解析を行う研究者に、無償で提供しているプログラム群であ る。CCP4i や CCP4i2 といったグラフィカルユーザーインターフェース (GUI) も提供されている。

図 0 は, CCP4i2 の画面である。左側のウィンドウは, 実行したジョブを, 下から順に一覧にしている。

「[1] Data reduction」(マージされていない MTZ ファイルをマージした MTZ ファイルに変換), 「[2] Define AU contents」(アミノ酸のシーケンスファイルを読み込み非対称ユニット中の分子数を評 価),「[3] MOLREP」(分子置換の実行),「[4] REFMACS5」(分子構造の最適化) の順に実行する。 右 側ウィンドウの「[1-4]」は「[1-4]」に対応する。

目次

ii

第1章	CrysAlis $^{\operatorname{Pro}}$ と CCP4 のダウンロードとインストール	1
1.1	はじめに	1
1.2	CrysAlis ^{Pro} のダウンロードとインストール	1
	1.2.1 Rigaku Oxford Diffraction forum のアカウントの作成	1
	1.2.2 CrysAlis ^{Pro} のダウンロード	3
	1.2.3 CrysAlis ^{Pro} のインストール	3
1.3	CCP4 のダウンロードとインストール	4
	1.3.1 CCP4 のダウンロード	4
	1.3.2 CCP4 のインストール	5
第2章	CrysAlis ^{Pro} による MTZ ファイルの作成	9
2.1	はじめに	9
2.2	「Finalize」による MTZ ファイルの作成	9
第3章	CCP4i2 による分子置換法の実行	13
3.1	はじめに	13
3.2	必要なファイルの準備	13
3.3	新規プロジェクトの作成	14
3.4	マージされた MTZ ファイルの作成	14
3.5	非対称ユニット中の分子数の評価	17
3.6	分子置換の実行	19
3.7	分子構造の最適化	20
3.8	Coot による分子構造の表示	21
付録 A	逆格子を定義する合理性	23
A.1	ブラッグの反射条件	23
A.2	ラウエの反射条件	23
A.3	エバルトの反射条件	24
	A.3.1 エバルトの作図法の基礎	24
	A.3.2 逆格子ベクトルとブラッグ反射面の関係	25
A.4	ミラーの作図法とミラー指数	26

D 1	#¥≓众, ≀,	と道とたよが日本地が西主 01
B.I	市田ガ	り場かれに お面の 対 が 安系 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
В.2	空间群	の記号 \dots
B.3	() () () () () () () () () () () () ()	
В.4	灯砂罗	そ素の組み合わせによる消滅則の美例 34
	B.4.1	単斜晶 $P12_11[P2_1/c(\#14)]$
	B.4.2	三斜晶 $P1(\#2)$
	B.4.3	単斜晶 $C12/c1[C2/c(\#15)]$
	B.4.4	斜方晶 $P2_12_12_1(\#19)$
	B.4.5	単斜晶 $P12_11[P2_1(\#4)]$
B.5	消滅貝	1の数学的証明
	B.5.1	複合格子による消滅36
		B.5.1.1 底心格子による消滅
		B.5.1.2 体心格子による消滅
		B.5.1.3 面心格子による消滅
	B.5.2	映進面による消滅
		B.5.2.1 軸映進面による消滅
		B.5.2.2 二重映進面 (e 映進面) による消滅 38
		B.5.2.3 対角映進面 (n 映進面) による消滅 39
	B.5.3	らせん軸による消滅................................39
		B.5.3.1 らせん軸 (2 ₁) による消滅
		B.5.3.2 らせん軸 (4 ₁) による消滅
		B.5.3.3 らせん軸 (4 ₂) による消滅
付録 C	三方晶	および六方晶の座標のとり方と消滅則 43
C.1	三方晶	の場合
	C.1.1	International Tables for Crustallography (2006) Vol.A に示された図 43
	C.1.2	実格子と逆格子ベクトルのとり方
	C.1.3	31 らせん軸による消滅則の導出 44
	C.1.4	\mathbf{a}, \mathbf{b} 軸方向の 2_1 らせん軸による消滅がないことについて
C.2	六方晶	の場合
0.1	C.2.1	International Tables for Crustallography (2006) Vol.A に示された図 46
	C.2.2	6 回らせん軸を記述するための座標
	C.2.3	61 らせん軸による消滅則の導出 47
	C.2.4	62 らせん軸による消滅則の導出 48
	C 2 5	6. らせん軸による消滅則の導出 48
	0.2.0	

iii

図目次

0	CCP4i2 のウィンドウ i
1.1	Google で「CrysAlisPro download」と入力 1
1.2	第1候補でヒットする「CrysAlis(Pro)-リガク」の URL
1.3	Rigaku Oxford Forum への登録 1
1.4	$\boxtimes 1.3 \mathcal{O} [4] \dots \dots$
1.5	$\boxtimes 1.3 \mathcal{O} [5] \dots \dots$
1.6	$\boxtimes 1.3 \mathcal{O} [6] \dots \dots$
1.7	アカウントアクティベートの通知メール2
1.8	右上のボタンをクリックしてダウンロード 2
1.9	ダウンロード中に表示されるウィンドウ2
1.10	ダウンロードされたインストーラー
1.11	インストール準備画面 2
1.12	ウェルカムメッセージ
1.13	インストール先のフォルダーを設定
1.14	インストール情報の表示
1.15	インストール中の表示画面
1.16	インストール中の表示画面
1.17	インストール中の表示画面
1.18	インストール終了画面
1.19	Google で「CCP4 download」と入力して検索。ブラウザーは Google Chrome でな
1.20	第1候補にヒットした「CCP4 download」をクリック
1.21	CCP4 download \mathcal{O} URL
1.22	CCP4 ダウンロード中の表示 5
1.23	ダウンロードされたインストーラー
1.24	インストーラーを任意のフォルダーに移動5
1.25	コマンドプロンプトを管理者として実行5
1.26	コマンドプロンプトを開く
1.27	インストーラーのファイル名をコピーする
1.28	インストーラーのファイル名をペーストして実行 6
1.29	セットアップをローディング中 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.30	$\frac{1}{2} \frac{1}{2} \frac{1}$
1.00	

1.31	SHELX と WinCoot もインストールする.....................	6
1.32	ライセンス事項に同意	6
1.33	Shelx 利用条件の確認	7
1.34	WinCoot の利用条件の確認	7
1.35	Windows 風 WinCoot の画面を選択して続行...................	7
1.36	インストール中	7
1.37	インストールの詳細	7
1.38	あと数分でインストール完了....................................	7
1.39	インストールの完了	8
1.40	インストールの完了	8
2.1	「exp_xxxx」のフォルダー	9
2.2	「exp_xxxx.par」のファイルをダブルクリックする	9
2.3	「Data Reduction [2]」「Finalize [3]」の順にクリック............	9
2.4	(a)「[1] Interactive」と (b)「[2]」 Export options」をクリックする	10
2.5	空間群の推定の過程で,表示されるウィンドウ	10
2.6	(a) には,正解はなく,ラジオボタンを付け替えて表示された (b) に,正解 $P4_32_12$ が	
	見つかった	11
2.7	CrysAlis ^{Pro} の画面右上に「RED Ready」が表示されたら,右上の × をクリックして	
	終了する	11
2.8	「exp_2488.par」と同じフォルダーの生成された「exp_2488_auto.mtz」	11
3.1	ニワトリ卵白リゾチームのアミノ酸配列と七面鳥卵白リゾチームの原子座標データの	
	ダウンロード	13
3.2	ニワトリ卵白リゾチームのアミノ酸配列と七面鳥卵白リゾチームの原子座標データの	
	ダウンロード	14
3.3	fasta,mtz,ent のファイルを,1 つのフォルダーに置いておくと,CCP4i2 による解	
	析が行いやすい...................................	14
3.4	CCP4i2 の立ち上げ	15
3.5	「Data reduction - AIMLESS」をダブルクリック............	15
3.6	「Data reduction - AIMLESS」の設定ウィンドウ.............	15
3.7	「exp_2488_auto.mtz」を図 3.6 [1] にロード	16
3.8	[2] 結晶名,[3] プロジェクト名,[4] 分解能を入力。[5] 対称性評価オプションを選択 .	16
3.9	(a) CCP4i「Project Viewer」の左上と, (b) 右上	16
3.10	ジョブが終了したときの表示	16
3.11	「Define AU contens」をクリックする	17
3.12	「Define AU contens」のファイルロード画面	17
3.13	「2lyz_A.fasta」のロード画面	17
3.14	「2lyz_A.fasta」のロード確認画面	17
3.15	非対称ユニット中の分子数を評価した結果...........................	18
3.16	「Molecular Replacement and refinement - MOLREP」をダブルクリック	18

3.17	「MOLREP」のファイルロード画面	18
3.18	ファイルを選択してロード....................................	19
3.19	MOLREP 実行の結果	19
3.20	REFMAC5 の設定	19
3.21	REFMAC5 の結果	20
3.22	REFMAC5 を 5 回繰り返した結果	20
3.23	Coot で用いるファイル画面	21
3.24	Coot により描画された分子構造..................................	21
A.1	ブラッグの反射条件	23
A.2	ラウエの反射条件	24
A.3	エバルト球	25
A.4	ミラーの作図法とミラー指数	26
B.1	process.out の内容 (その 1)。試料結晶はタウリン [Taurine; monoclinic P2 ₁ /c(#14)]	29
B.2	process.out の内容 (その 2)。試料結晶はタウリン [Taurine; monoclinic $P2_1/c(\#14)$]	29
B.3	process.out の内容 (その 3)。 試料結晶はタウリン [Taurine; monoclinic	
	P2 ₁ /c(#14)]。「setting #1」は図 B.5 [p.32] の「[8]CELL CHOICE 1」に対応す	
	δ	29
B.4	International Tables for Crystallography (2006) Vol.A に記載された $P2_1/c(\#14)$ の	
	反射条件。 k が奇数のとき 0k0 反射が,l が奇数のとき h0l, 00l 反射が消滅すること	
	を示している....................................	30
B.5	International Tables for Crystallography (2006) Vol.A の $P2_1/c(\#14)$ の表示。タン	
	パク質結晶ではこの空間群はあり得ない。	32
B.6	CrystalStructure 4.2 で空間群を指定し直す (低分子結晶の場合)	34
B.7	International Tables for Crystallography (2006) Vol.A PĪ(#2)。対称中心を持つた	
	め,この空間群はタンパク質結晶ではあり得ない。位相問題は単純である.....	34
B.8	International Tables for Crystallography (2006) Vol.A $C12/c1[C2/c](#15)$ 。 映進	
	面を持つため,この空間群はタンパク質結晶ではあり得ない	34
B.9	International Tables for Crystallography (2006) Vol.A $P2_12_12_1(\#19)$	35
B.10	International Tables for Crystallography (2006) Vol.A $P12_11[P2_1(\#4)]$	35
C.1	International Tables for Crystallography (2006) Vol.A, 対称要素の図。 $P3_121(#152)$	43
C.2	International Tables for Crystallography (2006) Vol.A, 原子座標の図。 $P3_121(#152)$	43
C.3	三方晶および六方晶に対する座標のとり方。実格子 (黒) と逆格子 (グレー) の基本並	
	進ベクトル	44
C.4	International Tables for Crystallography (2006) Vol.A, 対称要素の図。 $P6_{1}22(#178)$	46
C.5	International Tables for Crystallography (2006) Vol.A, 原子座標の図。P6 ₁ 22(#178)	46

第1章

CrysAlis^{Pro}とCCP4のダウンロードとイ ンストール

図 1.1 Google で「CrysAlisPro download」と入力

CrysAlis(Pro) - リガク CrysAlisPro は、Rigaku Oxford Diffraction フォーラム (https://www.rigakuxrayforum.com/)から ダウンロード してお使いいただけます。フォーラムを初めてご利用…

図 1.2 第 1 候補でヒットする「CrysAlis(Pro)-リガク」の URL

1.1 **はじめに**

この章では、タンパク質の分子構造決定に必要 な、フリーソフトウェア、CrysAlis^{Pro} と CCP4 のダウンロードとインストールの仕方について説 明する。CrysAlis^{Pro} は、Part 1a(低分子) および Part 1b(タンパク質) マニュアルに記述した、X 線回折スポットを取得するためのソフトウェアで あるが、回折スポットの指数付けのやり直しや、 空間群の検討、といったデータ処理にも必要にな る。測定用パソコンでもできるのだが、各自のパ ソコンにインストールして、これらを行う方が制 御用コンピューターの占有時間を少なくできるの で、これを推奨している。

図 1.3 Rigaku Oxford Forum への登録

1.2 CrysAlis^{Pro} のダウンロードとイン ストール

1.2.1 Rigaku Oxford Diffraction forum のアカウ ントの作成

図 1.1 は, Google で「CrysAlisPro download」 と入力したところである。図 1.2 のように, 「CrysAlis(Pro)-リガク」の URL が第 1 候補と してヒットする。図 1.2 で,文字色を反転させ て,ブラウザーの URL 入力欄にコピー&ペー ストすると,図 1.3 のように,「Rigaku Oxford Diffraction forum」への登録フォームが表示され る。図 1.3 [4], [5], [6] をそれぞれ拡大表示したの が,図 1.4, 1.5, 1.6 [p.2] である。

図 1.4 [p.2] では、 [1] に、希望するユーザー名、

Account Details	
Username: K_Okitsu	
Password: [2]	Confirm Password:
Email: yrt01404yrt@yahoo.co.jp	Confirm Email: yrt01404yrt@yahoo.co.jp
Required Information	
Full Name Please enter your full name (only Rigaku staff c	an see this)
Kouhei OKITSU	5
Institute Please enter the full name of your University or each account manually)	Company (please do not use abbreviations as we check
Tokyo Univ.	′ 」

図 1.4 図 1.3 の [4]

× .	Hide your email from other members.	[1]
-	Receive private messages from other users.	L+J
-	Alert me with a notice when I receive a Private	Message.
-	Notify me by email when I receive a new Privat	te Message.
-	Hide me from the Who's Online list.	
Do	not subscribe	
f you	a live in a time zone which differs to what this be	oard is set at, you can select it from the list below.
GM	IT (07:24 AM) 🗸	
	abt Saving Time correction:	

図 1.5 図 1.3 の [5]

Italy Jamaica Japan Kazakhstan Kenya	only Rigaku staff see this)		
Instrument(s) You must tell us the n will delay your registre VariMax Dua	nodel of Rigaku instrument ation. [2]	ou have purchased. Fai	lure to fill out this field properly
Position Position in your depar Doctor/Professor Forget Details We only use the abov following account acti Please remember	tment (only Rigaku staff ser [3] e information to verify your vation choose "Please forge [4]	e this) eligibili y to join. If you t"	want us to delete this information
Image Verification	on	into the text	
bots.	cess is used to prevent auto	omated spam	(case insensitive)

図 1.6 図 1.3 の [6]

[2], [3] に,希望するパスワード, [4], [5] に,ア カウント有効化の通知を受け取れるメールアドレ ス, [6] に名前 (リガクのスタッフ以外には分から

From	Rigaku Oxford Diffraction forum			
Account	Account Activation at Rigaku Oxford Diffraction forum			
K_Okit	lsu,			
The ad	ministrator has activated your forum account on Rigaku Oxford Diffraction foru			
To proc	ceed, please go to			
https://	/www.rigakuxrayforum.com			
You wi	II be able to login with the credentials you registered with.			
Thank	you,			
Rigaku	a Oxford Diffraction forum Staff			

図 1.7 アカウントアクティベートの通知メール

Rigaku Oxford Diffraction forum		Download	I CAP 32bit	Download CAP 64bit
Announcements				
Foru		Threads		
•	General Updates from Rigaku Other news	68	156	MicroED/3DED workshop 30-09-2021, 07:05 AM by bugbo
•	Announcements from the user community A forum for our users to make their own announcements.	1	1	Home-based crystallograph 29-06-2020, 01:13 PV by coless
•	Jobs A place to post job adverts of interest to our users	23	24	EAST COAST REGIONAL ACCOU 06-10-2021, 04:10 PM by Mark B

図 1.8 右上のボタンをクリックしてダウンロード

ダウ	マンロード	Đ	Q	 \Rightarrow
	CrysAlisPro171.41_64.93a.exe			
	2.9 MB/秒 - 14.4 MB (113 MB 中)、残り 34	秒		

もっと見る

図 1.9 ダウンロード中に表示されるウィンドウ

図 1.10 ダウンロードされたインストーラー

CrysAlisPro 41_64.93a - InstallSh	ield Wizard
-	Preparing to Install
0	CrysAlisPro 41_64.93a Setup is preparing the InstallShield Wizard, which will guide you through the program setup process. Please wait.
1000	Extracting: CrysAlisPro 41_64.93a.msi
A	Concel
•	Lancer

図 1.11 インストール準備画面

図 1.12 ウェルカムメッセージ

ない), [7] に,所属機関名を入力する。

図 1.5 では, [1] のチェックボックスに, すべて チェックを入れることが推奨される。

図 1.6 では, [1] のプルダウンメニューから国 名を選択, [2] には装置の名称を入力, [3] のプル ダウンメニューから職位を選択, [4] のプルダウ ンメニューから, 原則として「Please remember」 を選択する。

図 1.4, 1.5, 1.6 への入力がすべて済んだら, 図 1.3 [p.1] の「Submit Registration [7]」をクリッ クする。

1.2.2 CrysAlis^{Pro} のダウンロード

図 1.7 は,前節 §1.2.1 で登録した「Rigaku Oxford Diffraction forum」のアカウントがアクティ ベート (有効化) されたことを通知するメールで ある。図 1.4 [4], [5] で設定したメールアドレス に届く。このメールが届くまで,1時間 ~ 数時間 程度,待つ必要がある。

図 1.7 の赤枠で囲った URL をクリックすると, 図 1.8 が表示される。システムが 32 ビットか 64 ビットかに応じて「Download CAP 32bit」ない しは「Download CAP 64bit」をクリックすると, CrysAlis^{Pro} インストーラーのダウンロードが始 まり,図 1.9 が表示される。

インストーラーは,図 1.10 にように,「C:\ダ ウンロード」のフォルダーにダウンロードされて いる。

CrysAlis	Pro 41_64.93a - InstallShi	ield Wizard		×
Destinat	ion Folder			
Click Ne	xt to install to this folder, o	or dick Change to install t	to a different folder.	
07	Install CrysAlisPro 41_64	1.93a to:		
0	C:¥Xcalibur¥CrysalisPro1	171.41_64.93a¥	C	hange
			_	
nstalishield				

図 1.13 インストール先のフォルダーを設定

CrysAlisPro 41_64.93a - InstallShie	ld Wizard	×
Ready to Install the Program		
The wizard is ready to begin installa	tion.	
If you want to review or change any exit the wizard.	y of your installation settings, click	Back. Click Cancel to
Current Settings:		
Setup Type:		
Typical		
Destination Folder:		
C:¥Xcalibur¥CrysalisPro171.41_	.64.93a¥	
User Information:		
Name: Kouhei OKITSU		
Company: Microsoft		
tallShield		
	< Back Instal	Cancel

図 1.14 インストール情報の表示

1.2.3 CrysAlis^{Pro} のインストール

図 1.10 の exe ファイルをダブルクリックする ことにより, CrysAlis^{Pro} のインストールを始め ることができる。図 1.11 が表示され,やがて図 1.12 が現れたら,著作権に関するメッセージを読 んだ上で「Next」をクリックして続行する。

図 1.13 が表示されたら,通常は右下の「Next」 をクリックして続行するが,右上の「Change」を クリックすると,インストールするフォルダーを 変更することができる。図 1.14 が表示されたら 「Install」のクリックでインストールを開始する。

インストール中には,図 1.15, 1.16, 1.17 が表 示される。図 1.18 が表示されたら,「Finished」 をクリックして,インストール完了となる。

図 1.15 インストール中の表示画面

-	CrysAllsP10 41_04.55a	and balancia tankallard			
ine prog	Plaace wait while the Inst	all chield Wittard installs Cru	AlicPro 41 64	225	_
15	This may take several min	utes.	SAUSPTO 41_04.	- Ja.	
	Status:				
	Copying new files				
stallShield -					

図 1.16 インストール中の表示画面

図 1.17 インストール中の表示画面

1.3 CCP4 のダウンロードとインス トール

1.3.1 CCP4 のダウンロード

図 1.19 は, Google Chrome を立ち上げ, Google のページで「CCP4 download」と入力し

CrysAlisPro 41_64.93a - In	stallShield Wizard	×
14	InstallShield Wizard Completed	
0	The InstallShield Wzard has successfully installed CrysAlisPr 41_64.93a. Click Finish to exit the wizard.	0
	Show the readme file	
	Show the Windows Installer log	

図 1.18 インストール終了画面

図 1.19 Google で「CCP4 download」と入力 して検索。ブラウザーは Google Chrome でな ければならない

CCP4 Download

These are **downloads** for modern systems running 64 bit Linux. On Linux systems, **CCP4** Software Suite may be conveniently configured, downloaded and automatically ...

図 1.20 第 1 候補にヒットした「CCP4 download」をクリック

たところである。ブラウザーは Google Chrome でなければならない。Microsoft Edge では,う まくいかない。図 1.20 のように「CCP4 Download」の URL が第1候補としてヒットするので, これをクリックする。図 1.21 が開くので右下の 「Download Now !」をクリックしてダウンロード を開始する。ダウンロード中には,ブラウザーの 左下に,図 1.22 が表示される。インストーラー の exe ファイルは,図 1.23 のように「PC\ダウ ンロード」のフォルダーにダウンロードされてい る。このファイルをダブルクリックしてもインス

 \boxtimes 1.21 CCP4 download O URL

図 1.24 インストーラーを任意のフォルダーに移動

トールはできない。

1.3.2 CCP4 のインストール

まず「PC\ダウンロード」のフォルダーにある インストーラーを任意のフォルダーに移動する。 図 1.24 では,「C:\CCP4」のフォルダーを作り, ここにインストーラーを移動させている。

図 1.25 コマンドプロンプトを管理者として実行

次に, Windows の画面左下の検索ボックスに, 図 1.25 のように,「コマンドプロンプト [1]」と タイプすると「コマンドプロンプト [2]」,「[3] コ マンドプロンプト」が表示されるので「管理者と して実行 [4]」をクリックする。図 1.26 のように ウィンドウが表示されるので,「cd C:\CCP4」と 入力し, インストーラーを置いてあるフォルダー に移動する。

図 1.27 のように、インストーラーがあるフォ ルダーをエクスプローラーで開き、ファイル名 を [Ctrl]+[C] でコピーする。コマンドプロンプ トに、コピーしたファイル名を、図 1.28 のよう に、[Ctrl]+[V] でペーストし、[Enter] キーをタ イプして、CCP4 のインストールを開始する。

図 1.26 コマンドプロンプトを開く

図 1.27 インストーラーのファイル名をコピーする

図 1.28 インストーラーのファイル名をペース トして実行

図 1.29 セットアップをローディング中

図 1.29 のように表示され,図 1.30 以降のように、インストールが進行する。図 1.30, 1.31, 1.32 では、表示を読んだ上で、右下の「Next」を クリックして続行する。図 1.33, 1.34, 1.35 で

図 1.30 インストーラーローディング中

Choose which features of CCP	4 you want to install.	
Check the components you wa install. Click Next to continue.	nt to install and uncheck t	he components you don't want to
Select components to install:	CCP4 core SHELX WinCoot	Description Position your mouse over a component to see its description.
Space required: 7.2GB		
Indiana dia mandri da ana		

図 1.31 SHELX と WinCoot もインストールする

図 1.32 ライセンス事項に同意

は, チェックボックスないしはラジオボタンに チェックを入れた上で, 右下のボタンをクリック して続行する。

図 1.33 Shelx 利用条件の確認

Installing		
Please wait while CCP4 is being installe	d.	·CCP4
Extract: 214.cf 100%		
Show details		

図 1.36 インストール中

lease review the license terms before continuing installation.		CCF
ress Page Down to see the rest of the agreement.		
GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007		^
Copyright (C) 2007 Free Software Foundation, Inc. < <u>http:///</u> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.	<u>'sf.org/</u> >	
Preamble The GNU General Public License is a free, copyleft license for		~
f you accept the terms of agreement, click I agree to continue greement to install WinCoot.	e. You must accep	ot the
I agree to the conditions for use of WinCoot		

図 1.34 WinCoot の利用条件の確認

図 1.35 Windows 風 WinCoot の画面を選択 して続行

インストール中は, 図 1.36 [p.7] が表示される。 左上の「Show detail」をクリックすると, 図 1.37

nstelling		
Please wait while CCP4 is being installed.		
Extract: 2K9.cif 100%		
Extract: 2K0.cif 100%		^
Extract: 2K1.cif 100%		
Extract: 2K2.cif 100%		
Extract: 2K3.cif 100%		
Extract: 2K4.cif 100%	2	
Extract: 2K5.cif 100%		
Extract: 2K6.cif 100%		
Extract: 2K7.cif 100%		
Extract: 2K8.cif 100%		
Extract: 2K9.cif 100%		~

図 1.37 インストールの詳細

図 1.38 あと数分でインストール完了

[p.7] のように,インストールされているファイ ルの一覧が表示されるが,このボタンを必ずしも クリックする必要はない。

図 1.39 インストールの完了

図 1.40 インストールの完了

図 1.38 [p.7] のように,緑色のグラフが右端に 達したら,残り数分である旨表示される。 図 1.39 が表示されたら、右下の「Next」をク リックすると図 1.40 が表示され、「Finish」のク リックでインストールを終了する。

第2章

CrysAlis^{Pro} による MTZ ファイルの作成

図 2.1 「exp_xxx」のフォルダー

┃ 🖓 📴 〒 exp_2393 ファイル ホーム 共有 表示	-	- 🗆 🗸	×
← → ~ ↑ <mark>-</mark> → PC → OS(C:) → C	CrysAlisPro_Data → K_Okitsu → exp	_2423 🗸 🗸	5
名前	更新日時		
plots_red	2021/10/30 16:04		
struct	2021/10/30 16:04		
📕 tmp	2021/10/30 16:06		
AFC10_QC_RCD3_Pilatus200K_007CuMoD	W_0506 2019/06/05 15:35		
collision_exp_2488.xml	2021/10/27 21:52		
collision_pre_exp_2488.xml	2021/10/27 21:52		
copy_exp_2488.runbup	2021/10/28 2:52		
copy_pre_exp_2488.runbup	2021/10/28 2:19		
CrysalisExpSettings.ini	2021/10/28 3:04		
exp 2488.par	2021/10/28 2:22		

図 2.2 「exp_xxxx.par」のファイルをダブル クリックする

2.1 はじめに

次の第3章では、CCP4i2を使って、分子置換 法によって、相同タンパク質の構造を基に、分 子構造の決定を行う手順を記述する。これには、 CrysAlis^{Pro}によって取得した反射強度データを 格納した MTZ ファイルが必要になる。本章では その作り方を記述する。回折データ取得の直後 に MTZ ファイルを作ることもできるが、MTZ

図 2.3 「Data Reduction [2]」「Finalize [3]」 の順にクリック

ファイルは,作り直しをしなければならないこと がある。

2.2 「Finalize」による MTZ ファイル の作成

CrysAlis^{Pro} による測定データは, 「exp_xxxx」のフォルダーに納められて いる。図 2.1 は,エクスプローラーで 「C:\CrysAlisPro_Data\K_Okitsu」の フォ ルダーを開き,ここにある「exp_2488」のフォル ダーを示している。このフォルダーをクリックし て開いたのが,図 2.2 である。

図 2.2 の「exp_2488.par」のファイルをダブルク リックすると、CrysAlis^{Pro} が立ち上がる。ウィ ンドウの右で、図 2.3「Data Reduction [2]」をク リックすると、左下にサブメニューが表示される。 ここで「Finalize [3]」をクリックすると、図 2.4 (a) [p.10] が表示される。ここで、空間群を対話形 式で決定するために、図 2.4 (a)「Interactive [1]」 をクリックする。さらに「2] Export options」を クリックすると、図 2.4 (b) が表示される。MTZ

Stepic Creve SALIS*** Sander Sander Depresenter erg. 2481_wink List and 178.795 78.719 32 71605 86.777 Estimation Colles Mod 1983 07 2012 2112 2112 Lattice - P Controlsman especial	
Sance Sance Experiment exp_2488_print Unit out 70:7555 70:7519 37:1688 00:50 10:50 27:1605 00:777 Experiment Contraction State 20:10 Lattice - P Contractions FeededImatestic	
Experimente eq.2483_abi Unit cel 76.7965 19.131-31.1483 103.03 103.02.200564777 Exercise 0654 9465 1913 2012 2012 2012 2013 Lattes - P Fetber-of unit Peter-of unit Pete	
Emmil: C616 H450 H150 D122 S10 Z-1.0 Lattor- P T/redoit makes columbra Correctors	
Correctors	
Empirical correction Automated Manual Hie export options (1.0.19)	,
Numerical absorption Faces Sphere hid data items	
Beam path information	
Search for space group Auto Interactive Space group options	correction
Batch number Each num -> 11	atch Edit batch
Andrewsdal Annual Annual Annual	
	20005 _1.1 aw,
C/K/tys/ls/ho_Data/K_Oktsul/exp_2488_finalzed_2021_11_07_001_43212_1.44ng/exp_2488_puto Change Export.sep	aport MTZ
Standard set of Files No solution found Copy hkl to	CCP4 scaling
Expert entries In flar associated	diana.
Helo Defaults (D) 4	OK Cancel
Output	
CHCrypMsPto_DataWC_Collsurep_2495_malled_2021_11_07_001_52212_L4Angfexp_2495_suto Change	
Standard set of files No solution found Copy hid to	
Export options Exported Res: mtz, CCP4 scaling ON (project: , dataset no 0). 5	
Help Defaults (C) OX Cancel	

図 2.4 (a) [1] Interactive」と (b) [2]」 Export options」をクリックする

GRAIL (versci 2.4.1) + 539,2488,0470.HKI	? ×	GRAL (vers : 2.4.1) - EXP. 2488, AUTO.HKL	* *
Space group determination	CRYSALIS	Space group determination	CRYSALIS"
2 Settings Chief		🔂 Semman 🗱 Load 🙀 Centernel (g. Maat) (k. Lamon	
EEF_2449_A070-385. (403024) Colgorative (107007 - 107007	• [173408-	Devented + [ROBERT + [REARES]ROBERT]ROBERT	R Dis 100 Secul
a france a protect	× 100.000	20000 1-10000 10000 120000 120000 100000 100000 100000 100000	1 8080
Const of city and city of the const of the c	• (50000	Content (1) Content (1) <th< td=""><td>Ĵ</td></th<>	Ĵ
term (a); the product on the	radiation: [27/371	na (d)	G. Ballest soluber
	Cancer Apply Trees		Carrel Apply 1945
00AL (vers: 2A.1) - D/0_2460_AV/T03490_	1 ×	GRML (sees: 2.4.1) - 582,2488,4//TO.HO.	? ×
Space group determination	CRYSALIS	Space group determination	CRYSALIS
명 Settings @ Lood B ² Centerog		명 Semingel A Load A Connected 소 Magel 소 Lamon A Contering	
Lattice scoping. F A B C I F Der Auf Franzis- Franzis- Barting		LATENT READERSTORE 7 A B C 1 F DBT 2007 ALL F SHEAL B C LINE LINE LINE LINE SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL B C LINE LINE LINE LINE SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL B C LINE LINE LINE SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL B C LINE LINE LINE SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL SHEAL F SHEAL SHEAL F SHEAL SHEAL F SHEAL SHEAL F SHEAL SHEAL F SHEAL SH	
(b)	Gand (* Pilans) Canter (* Acade (* Acad	······································	C FORD C FOND
GRAL (vers. 2.4.1) - D/P_2468_AUTO.HOL	2 ×	QR4L (ves.: 24.0 - 09),2408,4070.H0.	7 ×
Space group determination	CRYSALIS	Space group determination	CRYSALIS"
T Settings (Cost) di Conterne (. Nagel)		は fertingel (語 Lost) (語 Centering) 上 Nagel 上 Lattice 語 Centering人 -E2 5-	
* [92,000 * [92,000 * [92,000 a [92,000 a [92,000 a	k (4936936	Esperimental Acentaic Centric Representaic (for n=2 (*))	
Descriptions process		(E)> 0.867 0.868> 0.758 0.728 (E)> 0.954 1.000 1.000 1.000 (E)> 1.749 (1.839) 1.546 1.546	
	ка у [нектна	(III 6) 1.014 (2.009) 1.000 4.100 (III 6) 1.010 (3.131) 4.101 11.140 (III 6) 5.467 (4.000) 16.000 37.100 (III 6) 5.467 (4.000) 16.000 37.100	
	H4 4 -687937	(1979-11): 0.224 (1.000 1.000 1.100 (1.000 (1979-11): 2.240 (1.010 1.001 2.001 2.001 (1.001(1.001 (1	
(c)		energy energy (1)	
	Cancel Apply New	(-)	Cancel Acedy Reig

図 2.5 空間群の推定の過程で、表示されるウィンドウ

ファイルを出力するために、「[3] Export MTZ」 をクリックしてから、「[4] OK」をクリックし て、図 2.4 (b) を閉じる。図 2.4 (a) 左下の「[2] Export options No file exported」が、図 2.4 (c) 「Exported files: mtz, CCP4 scaling ON (project:, dataset no 0)」のように変わり、MTZ ファイルを出力する設定になる。図 2.4 (c) 「[6] OK」をクリックすると図 2.4 のウィンドウが閉 じる。

データ処理が始まると,図 2.5 (a)-(f) が表示 されるが,右下の「Apply」をクリックして続行 する。これらは,結晶の空間群を決定するに当た り行われる処理の途中経過を示している。

図 2.5 (f) 右下の「Apply」をクリックしたあ

と、図 2.6 (a) のように、消滅則から推定された、 空間群の候補が表示される。 4_322 があるが、これ は正解ではない。「[1] most likely space groups」 のラジオボタンがチェックされているが、その左 の「[2] all solutions on branch (like in IT pp42-47, 55-67)」のラジオボタンにチェックを入れ直 すと、正しい空間群 4_32_12 が見つかる。 2_1 らせ ん軸による消滅を、CrysAlis^{Pro} が見落としたと 考えられる。消滅則と空間群については、付録 B [p.29] を参照 (らせん軸による消滅則については、 §B.5.3 [p.39] 参照)。

P4₃2₁2 が正解であるが, P4₁2₁2 と P4₃2₁2 は、消滅則のみから区別できない。次の第 3 章の

	?
Space group determination	CRYSALIS
」 S Settings 個 Load 母 Centering 点, Niggli 点, Lattice 母 Centering を <2-1> ① Space Group	
Systematic absence exceptions:	
42 41/43 -21- N 22 31 61	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
<i s=""> 0.3 0.1 1.9</i>	
# Space Group No. C/A En. O.A. Pie. Pyr. PDB R(int) N(eq) 2 P4(3) 78 A Y Y 233 0.068 161162	^
3 P4(1)22 91 A Y Y Y N 82 0.074 199161 4 P4(3)22 95 A Y Y Y N 83 0.074 199161	
Show	~
C all space groups C all solutions on a branch (like in IT pp 42-47, 55-67)	advanced space group selection
	Cancel Finish Help
AL (vers.: 2.4.1) - EXP_2488_AUTO.HKL	?
LL (vers.: 2.4.1) - EXP_2488_AUTO.HKL Space group determination	? CrysAlis ^{***}
LL (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination \$ Settings 圖 Load 嵌 Centering 声, Niggli 声, Lattice 嵌 Centering 长 <2.4> ① Space Group	? CrysAlis ^{***}
L (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Settings Load Contering , Niggli , Lattice Contering Systematic absence exceptions:	? CrysAlis ^{®®}
AL (vers.: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Settings Load Centering Ce	? CrysAlis ^{®®}
AL (vers.: 2.4.1) - EXP_2488_AUTO.HKL Space group determination \$ Settings Load AL (vers.: 2.4.1) - EXP_2488_AUTO.HKL \$ Settings Load \$ Settings Load \$ Settings Load \$ Settings Load \$ Systematic absence exceptions: \$ 2 2 31 61 \$ 1 > 05 5 2 2 2 12 \$ (1> 0.5 6.2)	? CrysAlis ^{®®}
AL (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination \$ settings Load @ Centering \$, Niggil \$, Lattice @ Centering \$, <e2.1> \$ space Group Systematic absence exceptions: 42 41/43 -21- N 1253 2 2 12 <1/s> 0.8 0.5 6.2 <1/s> (b)</e2.1>	? CrysAlis ^{®®}
L (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination \$ settings Load	? CrysAlis***
AL (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Settings Load Ø	? CrysAlis S
AL (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Settings Load Ø Settings Load Ø Settings Load Ø Centerind ja, Niggli January Lattice Ø Settings Load Ø Centerind ja, Niggli January Lattice Ø Centerind ja, Niggli Ø Systematic absence exceptions:	? CrysAlis S
L (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Systematic absence exceptions: 42 41/43 -21- N 12-53 2 2 12 CD 2 12	? €CrysAlis S
L (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Systematic absence exceptions: 42 41/43 -21- N 12-53 2 2 12 (b)	? CrysALis ^{Pro}
AL (vers: 2.4.1) - EXP_2488_AUTO.HKL Space group determination Systematic absence exceptions: 42 41/43 -21- N T>38 2 2 12 (b) * Space Group No. C/A En. O.A. Pie. Pyr. PDB R(int) N(eq) 10 P4(2)2(1)2 94 A Y Y Y N 83 0.074 199125 11 P4(3)22 35 A Y Y Y N 83 0.074 199125 12 P4(3)22 55 A Y Y Y N 1380 0.074 199125 13 P4(3)22 55 A Y Y Y N 1380 0.074 199125 14 P4(3)22 13 56 A Y Y Y N 1380 0.074 199125 15 P4(3)22 13 56 A Y Y Y N 1380 0.074 199125 16 P4(2)2(12) 56 A Y Y Y N 1380 0.074 199125 17 P4(3)22 35 A Y Y Y N 1380 0.074 199125 18 P4(3)22 35 A Y Y Y N 1380 0.074 199125 19 P4(3)22 41 solutions on etymoch Gike in 17 pr 42-47, 55-67) C most likely space groups	? CrysALis ^{Pro} et advanced space group selection Cancel Finish Holp

図 2.6 (a) には, 正解はなく, ラジオボタンを付け替えて表示された (b) に, 正解 P43212 が見つかった

図 2.7 CrysAlis^{Pro}の画面右上に「RED Ready」が表示されたら、右上の×をクリッ クして終了する

記述にしたがって CCP4i2 で解析すると,間違っ た空間群では, *R* 因子が下がらない。 このこと から正しい空間群を, 探ってゆくことになる。

図 2.6 (b) 右下「[3] Finish」をクリックする と, MTZ ファイルの生成が始まる。完了すると CrysAlis^{Pro} の画面右上に, 図 2.7 が表示される。

図 2.8 「exp_2488.par」と同じフォルダーの 生成された「exp_2488_auto.mtz」

× をクリックして, CrysAlis^{Pro} を終了する。図 2.8 のように,「exp_2488.par」と同じフォルダー に「exp_2488_auto.mtz」が生成されている。 The next page is the beginning of Chapter 3.

CCP4i2 による分子置換法の実行

図 3.1 ニワトリ卵白リゾチームのアミノ酸配 列と七面鳥卵白リゾチームの原子座標データの ダウンロード

3.1 はじめに

タンパク質は 20 種類のアミノ酸がつながって 1 次構造を形成し,これが生体内で折りたたまれ て (フォールディング),3次元構造をとり,機能 を発現する。1 次構造 (アミノ酸配列)を決定す る方法は確立されいるが,これのみから3次元構 造を決定する方法は,現在まだない。

タンパク質の3次元構造を決定する際に,最も 広く用いられている手法が,X線結晶構造解析で ある。3次元構造決定法には,NMR,クライオ電 子顕微鏡などもあるが,これらの手法によって, PDB(Protein Data Bank)に登録された,タン パク質は,2021年11月時点で,18万件を超えて いる。3次元構造未知の場合でも,類似したアミ ノ酸配列のタンパク質 (相同タンパク質) が存在 し、立体構造も似ている場合が多いことが、経験 的に知られている。相同タンパク質の構造から出 発して、X 線回折強度データと最もよく一致する ように目的の構造を求める手法が分子置換法であ り、タンパク質 X 線結晶構造解析の主流になり つつある。

本章では,ニワトリ卵白リゾチームの分子構造 を,相同タンパク質である七面鳥卵白リゾチーム から,求める例について記述する。

3.2 必要なファイルの準備

構造が決定されたタンパク質には、数字から始 まる4文字のPDB ID が与えられている。PDB ID は、「Hen egg white lysozyme」(ニワトリ卵白 リゾチーム)、「Turkey egg white lysozyme」(七 面鳥卵白リゾチーム)と、PDBのホームページ で入力することで検索できる。日本語版のPDBj は、サーチエンジンで「PDBj」と入力すること で、第1候補にヒットする。ニワトリ卵白リゾ チームのPDB ID は「2LYZ」、七面鳥卵白リゾ チームのPDB ID は「1JEF」である。

図 3.1 は、PDBj で「2LYZ」、「1JEF」と入力 して検索をかけたところである。図 3.1 (a) で、 「2LYZ」と入力して検索すると、図 3.1 (b)、(c) が、「1JEF」と入力して検索すると、図 3.1 (d)、 (e) が、表示される。「[2] sequence (fasta)」およ び「[3] PDB 形式 (すべての情報)」の、緑色の 下向き矢印のクリックで、それぞれ、ニワトリ 卵白リゾチームのアミノ酸配列のデータファイ ル「2lyz_A.fasta」と、七面鳥卵白リゾチームの

図 3.2 ニワトリ卵白リゾチームのアミノ酸配 列と七面鳥卵白リゾチームの原子座標データの ダウンロード

原子座標データ「pdb1jef.ent」をダウンロードで きる。

これらのファイルは、図 3.2 (a) のように、 「PC\ダウンロード— [1]」のフォルダーにダウ ンロードされている。「2lyz_A.fasta」は、テキス トファイルがそのままダウンロードされている が、「pdb1jef.ent」は圧縮フォルダーとしてダウ ンロードされる。図 3.2 (a) 「[2] pdb1jef.ent.gz」 を右クリックすると、図 3.2 (b) のプルダウンメ ニューが開く。「[3] 解凍」、「[4] ここに解凍」の 順にクリックすると、「[5] pdb1jef.ent」のフォ ルダーができる。この中に、テキストファイル 「pdb1jef.ent」が入っている。

これらのファイルを,図 3.3 に示すように,第 2 章の記述にしたがって作成した,X 線反射強 度データを収めた MTZ ファイルと,同じフォル ダーに置いておくと,CCP4i2 によるデータ解析 が行いやすくなる。

3.3 新規プロジェクトの作成

Windows のデスクトップにある図 3.4 (a) の アイコンをダブルクリックすると,図 3.4 (b) CCP4i2の「Project Viewer」が開く。図 3.4 (b) 右の「[1] New project」をクリックすると,図

📙 📝 📙 ╤ 2021_11_02_00	1_2488		_		×
ファイル ホーム 共有 暴	長示				^ 🕐
プレビュー ウィンドウ ナビゲーション ウィンドウ	 ・ ・	イコン N 大アイコン 🕃 コン 💵 一覧 📑 表示 📰 コンテンツ	圖 中アイ Ξ 詳細	עב' • •	
ペイン		レイアウト			
← → × ↑ 📙 C:¥Data¥20	021_11_02_00	1_2488 ~	5	P	
▲ 名前	^	更新日時	1	種類	
20	ta	2021/11/02 16:24	F	ASTA 77	ſJŀ
20 📄 exp_2488	auto.mtz	2021/10/29 2:26	r	MTZ ファイJ	L.
20 Deb1jef.er	nt	2020/07/04 21:45	E	ENT ファイル	,
20 ~ <				>	_
3 個の項目					==

図 3.3 fasta, mtz, ent のファイルを, 1つの フォルダーに置いておくと, CCP4i2 による解 析が行いやすい

3.4 (c) のプロジェクト作成ウィンドウが立ち上 がる。図 3.4 (c) [2] のように、プロジェクト名を タイプし、図 3.4 (c) 左下「[3] Create project」 をクリックすると、新しいプロジェクトウィン ドウが開く。前のプロジェクトウィンドウが開 いていたら、これを閉じる。図 3.4 (b) 左、「[4] Task menu」をクリックすると、図 3.4 (b) 右下 に、「[5]」のようにジョブが一覧表示される。

以下,この冊子の表紙に、図0で示したとおり,

- §3.4「[1] Data reduction AIMLESS」[マー ジされていない反射強度データ (MTZ) を, マージした MTZ データに変換]
- §3.5 「[2] Define AU contents」(fasta ファ イルをロードして、非対称ユニット中の分子 数を評価)
- 3. §3.6 「[3] Molecular Repalacement and refinement - MOLREP」(分子置換の実行),
- 4. §3.7 「[4] Refinement REFMAC5」(分子 構造の最適化)

の順に実行してゆく。

3.4 マージされた MTZ ファイルの作成

分子置換法の実行には、マージされた MTZ ファイルが必要である。MTZ ファイルは、X 線 反射強度データを記述したファイルであるが、第 2 章の記述にしたがって作成した MTZ ファイル は、「マージ」されていない。「マージ」とは、等

図 3.5 「Data reduction - AIMLESS」をダ ブルクリック

価な反射の X 線反射強度データをまとめること で,その際に,等価なミラー指数の反射強度がど れだけばらついているかを示す *R_{merge}* 因子を評 価する。

図 3.4 (b),「Project Viewer」 左上の「[4] Task menu」をクリックすると,右側に [5] の画面が表示 される。上から 3 番目の「X-ray data reduction and analysis」の左にある「>」をクリックして 表示されたのが,図 3.5 である。図 3.5 「Data reduction - AIMLESS」をダブルクリックする と,図 3.6 が開く。

図 3.6 「Data reduction - AIMLESS」の設 定ウィンドウ

図 3.6 右の [P] をクリックすると,図 3.7 (a) [p.16] が開く。右上の [1] をクリックす るとフォルダー選択ウィンドウが開くので, 「C:\Data\2021_11_02_001 [3]」を選択すると, 「exp_2488_auto.mtz」が表示される。これをク リックしてから,さらに「OK [4]」をクリッ クすると,図 3.7 (b) が表示される。[5] には, 「exp_2488_auto.mtz」が,マージされていない反

図 3.7 「exp_2488_auto.mtz」を図 3.6 [1] にロード

図 3.8 [2] 結晶名, [3] プロジェクト名, [4] 分 解能を入力。[5] 対称性評価オプションを選択

射強度データのファイルである旨,記述されてい る。図 3.7 (b) 右下「[6] OK」をクリックすると, 「exp_2488_auto.mtz」が,プロジェクトにロード される。

図 3.6 [p.15] 「Crystal name [2]」と「Dataset name [3]」には、任意の結晶名とデータセット名 を、図 3.8 [2], [3] のようにと入力する。アルファ ベットと数字,「_」(アンダースコア),「-」(ハイ フン)で入力する。空白は許されない。

図 3.6 [p.15] 「[4] Resolution range」には,第 2 章の記述にしたがって評価した,結晶の分解能 を記述する。例えば,図 3.8 [4] のように,「20.0」 (最低分解能) to「1.4」(最高分解能)と入力する。 分解能が高くない結晶に対して,小さすぎる値の

図 3.9 (a) CCP4i「Project Viewer」の左上 と, (b) 右上

ob <u>1: Da</u>	a reduction	- AIMLES	S	The	job is Fini	shed	
out Resul	ts Comments						
Headline	Summary	Phaser	Truncate	SG details	Merging	SDanalysis	Details
							^
						23:01 03-	Nov-2021
▼ Key s	ummary						
Copying unm	erged data to outp	ut file in space g	roup P 41 21 2 w	ith reindex operat	or [h,k,l]		
Key statistic	for Dataset: 2021	_11_02_001_248	8/Lysozyme_248	18/Data_2488			
Unit	cell: 76.782 76.782	37.168 90.000	90.000 90.000, w	avelength 0.71073	A		
Estin	ates of resolution:	input resolution	1.40Å				
- be	ond 1.40Å from in	formation conte	nt > 0.10, beyon	1.40Å from CC(1,	(2) > 0.20, 1.40	Å from $I/\sigma > 1.00$	
Anis	otropic limits: - In	h k plane 1.40Å	CC(1/2), 1.40Å I/	σ - Along I axis 1.	40Å CC(1/2), 1.	40Å I/σ	
Rmea	s: overall 0.088, in	nner bin 0.037					
In ou	ter bin: Mean(I/σI)	4.5 CC(1/2) 0.92	29				
Over	all filtered Mean(cl	hi^2): 0.98					
Anor	nalous CC(1/2) in in	nner bin 0.072					
Sign	ficant anomalous s	ignal extends to	a resolution of 9	.89A (above CCan	om threshold 0.	10)	
Num	ber of rejected out	liers: 60 (> 6ơ); l	petween Friedel p	airs: 0 (> 31.80); t	oo large: 0 (E >	10.00)	
Note	inner shell comple	teness: 52.4%					
War	ning: low inner she	Il completeness n	ay indicate that	overloaded strong	observations h	ave been lost	
SD	orrection inform	nation:					
SEVE	RE WARNING: SD co	rrection parame	ters are outside	expected limits, see	SD analysis pa	nel below for more	details
Asyr	nptotic I/sigI, ISa: A	AllRuns: cannot d	letermine ISa				

図 3.10 ジョブが終了したときの表示

最高分解能を設定すると,*R*因子が下がらない原因になる。

図 3.6 [p.15] [5] のプルダウンメニューを開く と,図 3.8 [5] が表示されるが,一番下の「No symmetry testing just copy and conbine input files」 を選択する。第2章の記述では, CrysAlis^{Pro} によ るファイナライズを行う段階で,空間群を $P4_32_12$ であると決定した。この選択は, CrysAlis^{Pro} で 決定した空間群を,そのまま採用することを意味 する。 $P4_12_12$ と $P4_32_12$ は,消滅則が同じであ り,これだけでは区別できない。しかし, CCP4i2 で分子構造決定を行うと,間違った空間群では, *R* 因子が下がらない。試行錯誤を繰り返すこと で,正しい空間群を最終的に決定するのである。

上の設定が完了したら,図 3.9 (a) 「Project Viewer」の左上の「Run」をクリックしてジョ ブを実行する。実行中は,図 3.9 (b) 「Project Viewer」の右に,「小人 (こびと)」が走る動画が 表示される。

図 3.10 左上の「Result」のタブをクリックす

図 3.11 「Define AU contens」をクリックする

ると、下のウィンドウが表示され、マージされた MTZ ファイルの生成が完了する。図 3.10 をス クロールダウンすると、X 線回折強度データに関 する多くの情報を表示させることができる。

3.5 非対称ユニット中の分子数の評価

結晶の分子構造を求めるにあたり,結晶の空間 群 (本ケースでは P4₃2₁2) に応じて,元の分子の 像 (非対称単位) が単位胞内に複数個存在するこ とになる。しかし,もとの分子の像がひとつの分 子であるという保証は,現時点ではない。MTZ ファイルには,単位胞のサイズと空間群が書か れている。構造を求めようとしている,分子のサ

図 3.13 「2lyz_A.fasta」のロード画面

python	? ×
GH-1 2lyz_A:	-
	OK Cancel

図 3.14 「2lyz_A.fasta」のロード確認画面

イズを見積もることができれば,タンパク質の 分子の 30%~70% が水であるという経験的事実 に基づいて,非対称単位中の分子の個数を推定で きる。幸い,ニワトリ卵白リゾチームのアミノ酸 配列 (1 次構造) のデータ「2lyz_A.fasta」を §3.2 [p.13] の記述にしたがって,すでにダウンロード してある。本節では,これを用いて非対称単位に 含まれる分子数を決める手順について記述する。

本冊子の表紙,図0[2]を実行すればよい。図 3.11 は,図 3.4 (b) [p.15] [5] のいちばん上にある 「Import merged data, AU contents, alignments or coordinates」の左にある「>」をクリックして 開いた画面である。「Define AU contents」をダ ブルクリックすると図 3.12 が開く。

図 3.12 「[1] Sequence」をクリックしてか ら,「[2] +」をクリックする。右下に開いたプ ルダウンメニューで,いちばん上の「Load se-

図 3.15 非対称ユニット中の分子数を評価した結果

quence file」をクリックすると、図 3.13 (a) が 表示される。[1] のフォルダー選択ボタンを クリックすると、図 3.13 (b) が表示される。 「C:\Data\2021_11_02_2488 [2]」のフォルダーに ある、「2lyz_A.fasta [3]」を選択して、「[4] Open」 をクリックする。図 3.13 (c) [p.17] が開き、[4] ニ ワトリ卵白リゾチームのアミノ酸配列データファ イル「2lyz_A.fasta」が、ロードされることを示す メッセージが表示される。図 3.14 (c) [p.17] 「[6] OK」をクリックすると、「2lyz_A.fasta」が、プロ ジェクトにロードされた旨、表示される。「OK」 をクリックして続行する。

次に、図 3.12 [p.17] [3] の下向き三角マーク をクリックすると、プルダウンメニューが開く。 「[4] 1 /Lysozyme_2488/Data_2488」は、最初の ジョブ「Data reduction - AIMLESS」で、図 3.8 [p.16] [2] と [3] で指定した場所に出力した、マー ジされた MTZ ファイルを、ロードすることを意 味する。

ファイルのロードが完了し、図 3.9 [p.16] と

図 3.17 「MOLREP」のファイルロード画面

同様に, (a) 左上から 3 番目の「Run」をクリッ クすると, (b) 右上に「小人 (こびと)」が走る動 画が示され, ジョブが実行される。図 3.15 左上 の「Result」のタブを開くと, 図のような画面が 表示される。図 3.15 [1] には, ニワトリ卵白リ ゾチームのアミノ酸配列 (1 次構造) が示されて いる。[2] には, これから求められた分子量 (Da) と, MTZ ファイルに記述された格子定数から計 算した, 単位胞の体積 (Å³) が示されている。図 3.15 [3] には, 結晶中の溶媒 (主に水) の質量比率 は, 35.77% と見積もられ, このことから, 非対 称ユニット中の分子数は, 1.0(100%) の確率で, 1 個であることが示されている。

Experimental data	must be selected	(a)
R Free R set	Journal be selected Journal to selected Market Serger and a selected to Accel be a beneficial to a selected	(b) [2]
Secret model		[3]
Manual Atomic model	.must be selected	
Atom selection	Open Model coordinates	? :
oimple selections	Download PDB from EBI-PDBe. 4-letter code	Download View websi
	Look in ccp4 project Full path	• or
	Look in: C#Data#2021_11_02_001_2488	- C O O 📙 🖽 🗉
	📜 demo_data 🔰 pdb1je£ent	(c)
	File name: pdb 1jef.ent	Open
	Files of type: Model coordinates (*pdb *cif *ent)	▼ Gancel
Sequence of target	model	(d) [4]
AU contents	_is not used	(u) .
H a suitable ASU Select one sequence	, us not used 2 Asu content tile from Define AU contents	

図 3.18 ファイルを選択してロード

3.6 分子置換の実行

図 3.4 (b) [p.15] 左上の「Task menu」をク リックし,右に表示される [5] のリストの上か ら6番目,「Molecular Replacement」の左にあ る,「>」をクリックすると,図 3.16 が開く。こ こで,「Molecular Replacement and refinement -MOLREP」をダブルクリックすると,図 3.17 が 表示される。[1],[2],[3],[4] にファイルをロー ドするのだが,[1],[2],[4] では,右端の下向き 三角形をクリックして,プルダウンメニューを開 き,[3] では,右端のフォルダー選択ボタンをク リックして,ファイル選択ウィンドウを開く。

すなわち,図 3.18 [1],[2],[3],[4] のクリック によって,図 3.18 (a):1番目のジョブ実行によっ て作成された,X線回折強度データ(マージされ た MTZ ファイル),(b):おなじく1番目のジョ ブ実行によって作成された,Free R set のファ イル,(c):C:\Data\2021_11_02_2488 のフォル ダーに置いた七面鳥卵白リゾチームの原子座標 データファイル(pdb1jef.ent),(d):2番目のジョ ブ実行によって作成された非対称ユニット中の分 子の個数データファイルを,ロードする。これら のファイルを参照して,七面鳥卵白リゾチームの 3次元構造を,アミノ酸配列だけ,ニワトリ卵白

図 3.19 MOLREP 実行の結果

図 3.20 REFMAC5 の設定

リゾーチームに置き換えた,仮想的な分子構造を 作るのである。

図 3.9 [p.16] と同様に, (a) 左上から 3 番目の 「Run」をクリックすると, (b) 右に「小人 (こび と)」が走る動画が示され, ジョブが実行される。 図 3.19 は, 画面左上の「Result」のタブをクリッ クして表示される画面である。

図 3.19 [1]-[4] は, 図 3.17 および, 3.18 の, [1]-[4] に対応する。

図 3.21 REFMAC5 の結果

3.7 **分子構造の最適化**

次に、分子構造に水和水を付けた上で、分子構 造の最適化を行う。これまでのジョブと同様、表 紙、図 0 で、「[[4]] Refinment REFMAC5」をダ ブルクリックしてもよい。しかし本節では、さら に簡便な方法について記述する。

図 3.19 [p.19] 下の「REFMAC5」をクリック すると、図 3.20 のような画面が開く。図 3.20 [1], [2] は、1 番目のジョブ「Data reduction -AIMLESS」によって作成された、マージされた MTZ ファイルと、Free R set のファイルで、3.18、 3.19 [p.19] の [1], [2] と同じである。3.19 [p.19] [3] は、§3.6 [p.19] ひとつ前のジョブ「MOLREP」 で生成された、仮想的な分子構造である。ここか ら出発して、MTZ ファイルに記述された、X 線 回折強度データとなるべくよく合うように、分子 構造を最適化してゆくのである。

タンパク質分子の周囲には、一般に多くの水分 子 (水和水) が付着している。このため、図 3.20 [p.19], 左下の「Add waters」には、必ずチェッ クを入れる。右下の「10」は、REFMAC5, 1 回 のジョブで何度の最適化計算を行うかのオプショ ンである。とりあえずこのままにしておく。

6 16 1 La D	nents	0.15	01	24.1.1.1				
etault weight Per cycl	e Picture	Outliers	Other	3-factor analysis	amachandran plo	o bity geometi	ryar Bib	lio Run
Refinement							19:34 06-1	lov-2021
								-
Statistic	Value	î		Running r	efmac R-factors	•		
Resolution	10.24-1.40		0.28			-	R Factor	- 0.025
No. reflections all/free	22371 / 1101	h .	0.260				R_Free	0.020
R-tactor/R-tree	0.198 / 0.260	l i	0.24				rmsBonds	- 0.015
Rande	0.0121	-fa	0					•
Angles	2.036	CC	0.22					- 0.010
Chain mean B			0.200					7 0.005
(No. atoms)			0.18					- 0.000
AAA	12.1(1907)	~	1	2	3	4	ę	5
Current weight a Per cycle statis Picture	ipplied to	A-Lay	CEIM	1s 0.4631053	81			
Current weight a Per cycle statis Picture Outliers identif	ics	ac	CEIM	1s 0.4631053	81			
Current weight a Per cycle statis Picture Outliers identif Other plots froi	ipplied to tics ied by Refm n log file	ac	CEIM	18 0.4631053	81			
Current weight a Per cycle statis Plcture Outliers identif Other plots from B-factor analys	ipplied to tics ied by Refm m log file is	ac	CEIM	18 0.4631053	81			
Current weight a Per cycle statis Picture Outliers identif Other plots fro B-factor analys Ramachandran	ics ied by Refm n log file is plots	ac	LEIM	18 0.4631053	81			
Current weight a Per cycle statis Picture Outliers identif Other plots froi B-factor analys Ramachandran MolProbity geo	ipplied to tics ied by Refm n log file is plots metry analy:	ac	Ceim	18 0.4631053	81			
Current weight a Per cycle statis Picture Outliers identif Other plots from B-factor analys Ramachandran MolProbity geo Input Data	ipplied to tics ied by Refm n log file is plots metry analys	ac	Ceim	18 0.4631053	81			
Current weight # Per cycle statis Picture Outliers identif Other plots froi B-factor analys Ramachandran MolProbity geo Input Data Atomic model	pplied to tics ied by Refm n log file is plots metry analy: 7 Model fr	ac sis	nent (PD	15 0.4631053 B format)	81			
Current weight # Percycle statis Picture Outliers identify Outliers identify Outliers fro: B-factor analys Ramachandran MolProbity geo Input Data Atomic model Commetry dictio	ied by Refm n log file is plots 7 Model fr ary 7 Accur	ac sis	nent (PD	B format)	81			
Current weight # Per cycle statis Picture Outliers identify Outliers identify Outliers identify Ramachandran MolProbity geo Input Data Annic model Ratections Reflections	ied by Refm n log file is plots 7 Model fr ary [7 Accur 1 /Lysozy	ac sis mulated lig me_2488/l	nent (PD and geon Data_248:	B format)	81			
Current weight # Per cycle statis Per cycle statis Picture Outliers identif Other plots foro B-factor analys Ramachandran MolProbity geo Input Data Momic model Reflections Re	ied by Refm n log file is plots 7 Model fr 1 /Lyoozy 1 FreeR -	ac sils me_2488/1 Spe:P 43	nent (PD and geom Data_248: 21 2;Res	Is 0.4631053: B format) netry dictionary 3 in 1.49ACell 768,76	837290.090.090	1.0		
Current weight # Percycle statis Procycle statis Procture Outliers identif Other plots froi B-factor analys Ramachandran MoiProbity geo Input Data MoiProbity geo Input Data Reflections R	ied by Refm n log file is plots 7 Model fr 1 /Lyoozy 1 FreeR -	ac sis nulated lig me_2498/1 Spe:P 43	nent (PD and geom Data_2481 21 2;Res	E formet) B formet) ety dictionary s in 140ACell 78.876.	8372.90.0.90.0.90	1.0		

図 3.22 REFMAC5 を 5 回繰り返した結果

図 3.9 [p.16] と同様に, (a) 左上から 3 番目の 「Run」をクリックすると, (b) 右に「小人 (こび と)」が走る動画が示され, ジョブが実行される。 図 3.21 は, 画面左上の「Result」をクリック して表示される画面である。図 3.21 「[1] Reflections」,「[2] Free R set」は, 図 3.17, 3.18, 3.19 3.20 と同じく, 1 番目のジョブ「Data reduction - AIMLESS」によって作成された, マージされ た X 線回折強度データと, Free R set のファイ

ルである。図 3.21 「[3] Atomic model」は、ひ とつ前 (3 番目) のジョブ「MOLREP」によって 作成された原子座標データである。

図 3.21,右上のグラフは,構造の最適化を繰り 返すごとに, *R* 因子の値 (黄色の曲線) が小さく なってゆく様子を示している。

図 3.21, 左下「REFMAC5」のクリックを繰 り返すと,ひとつ前の「REFMAC5」によって作 成された原子座標データが,自動的にロードさ れる。

図 3.22 は、同じ条件で、「REFMAC5」を 5 回 繰り返したあと、左上の「Result」のタブをクリッ クして開いた画面である。*R* 因子は、19.8% まで 低下している。

図 3.23 Coot で用いるファイル画面

3.8 Coot による分子構造の表示

図 3.22 の中央下にある「COOT」をクリック して開いたのが、図 3.23 である。左側の Job list には、これまでに行ってきたジョブが下から順 に一覧にされている。「1 Data reduction」,「2 Define AU contents」「3 MOLREP」を行ったあ と、「4-8 REFMAC5」を 5 回実行して、分子構 造を最適化したことがわかる。

図 3.23 右側のウィンドウの [1], [2] に表示さ れているのは,最後の最適化「8 REFMAC5」に よって生成された,原子座標と電子密度マップの データファイルである。

図 3.23 左上の「Run」をクリックすることに

図 3.24 Coot により描画された分子構造

より表示されるのが,図 3.24 である。アミノ酸 配列の骨格 (黄色) と,電子密度 (青) が,重ねて 表示されている。

分子モデルの中央を,上下左右にクリック&ド ラッグすることで,縦方向ないしは横方向に,分 子を回転させることができる。また,モデルのフ レームの端を,上下ないしは左右にクリック&ド ラッグすることで,モデルの面内回転ができる。

青で描かれているのは,等電子密度面である が,しきい値は,マウスホールの回転で,変える ことができる。マウスを右クリックして,左右な いしは,上下にドラッグすると,分子モデルの表 示倍率を変えることができる。[Ctrl] キーを押し ながら,マウスをクリック&ドラッグすると,分 子モデルを上下左右に平行移動させることがで きる。 The next page is the beggining of Appendix A.

付録 A

逆格子を定義する合理性

結晶学の初学者にとって、「なぜ逆格子を定義 するのか」ということが多くの場合、最初の躓き になる。式 (A.1) あるいは式 (A.2) というわか りやすいブラッグの条件式というものがあり、訳 のわからない「逆格子」や「逆空間」なるものを 敢えて定義しなくても、結晶学を修めるのに問題 ないだろう、ということを初学者の多くが思う。 この章は、ブラッグの反射条件、ラウエの反射条 件、エバルトの反射条件(逆格子がエバルト球の 表面にのること) が等価であることを示すこと により、逆格子というものがいかに合理的に定義 されているかを読者に理解してもらうことを目的 として記述する。

結晶にはその対称性に応じた消滅則があるが, 議論を単純にするため,消滅がないものとして記 述する。

A.1 ブラッグの反射条件

図 A.1 は, ブラッグの反射条件を示す図であ る。この図は, 高校の物理の教科書にも掲載され ており, X線回折という現象を直観的に理解する のに適している。ブラッグの条件は, 以下の式で 記述される。

$$2d\sin\theta_B = n\lambda. \tag{A.1}$$

X線を反射する原子の並びがあったとき(図 A.1 黒い線の光路に対して、グレーの線の光路は、 $|\overrightarrow{ab}|+|\overrightarrow{bc}|=2d\sin\theta_B$ だけ長く、これが波長の整 数倍であれば、互いに強め合う干渉によりブラッ グ反射が起きる、というものである。d'=d/nのように、格子面間隔を定義し直して、次のよう

図 A.1 ブラッグの反射条件

に記述するのも一般的である。

$$2d'\sin\theta_B = \lambda. \tag{A.2}$$

ここで,読者に対して1つ疑問を投げかけてみ よう。入射角と反射角は,どうして等しいのだろ うか。格子面が鏡のようにはたらくから,あたり まえ?。それではなぜ,鏡による反射は入射角と 反射角が同じなのだろうか。結晶学のベテランで も,案外この問いに答えられなかったりする。

A.2 ラウエの反射条件

ラウエの反射条件は、1912年、ラウエ
(Max Theodor Felix von Laue; 1879/10/9-1960/4/24) がX線回折という現象を発見した
ときに、これを説明するために用いた条件式で、
図 A.2 を参照して次の式で記述される。

$$\begin{aligned} \mathbf{R}_{0}\mathbf{B} &- \mathbf{A}\mathbf{R}_{1} \\ &= \left| \overrightarrow{\mathbf{R}_{0}\mathbf{R}_{1}} \right| \cos \beta - \left| \overrightarrow{\mathbf{R}_{0}\mathbf{R}_{1}} \right| \cos \alpha \qquad (A.3a) \\ &= \overrightarrow{\mathbf{R}_{0}\mathbf{R}_{1}} \cdot \mathbf{s}_{1} - \overrightarrow{\mathbf{R}_{0}\mathbf{R}_{1}} \cdot \mathbf{s}_{0} = n_{0}\lambda. \qquad (A.3b) \end{aligned}$$

 \mathbf{s}_0 と \mathbf{s}_1 は、入射X線と反射X線の伝播方向の 単位ベクトルである。 \mathbf{R}_0 と \mathbf{R}_1 が、等価な原子

図 A.2 ラウエの反射条件

(格子点) であった場合,黒の光路とグレーの光 路の差は,式(A.3) 左辺のようになり,これが波 長の整数倍であるとき,点 R₀ と R₁ に散乱され る波は強め合う干渉をすることになる。

ところで、 $interimation R_0$ と R_1 は等価な格子点である ため、 $\overrightarrow{R_0R_1}$ には以下のような拘束条件がある。

$$\overline{\mathbf{R}_0}\overline{\mathbf{R}_1'} = n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}.$$
 (A.4)

ここで, n_x , n_y , n_z は, 任意の整数, **a**, **b**, **c** は基 本並進ベクトルである。すなわち, ラウエの反射 条件では, 任意の整数, n_x , n_y , n_z に対して, 式 (A.3) 左辺の値が, 波長の整数倍にならなくては ならない。点 R₀ と R₁ が等価な格子点であると いうことは, 条件式 (A.3) があらゆる n_x , n_y , n_z の組に対して成り立たなければならないことを意 味する。式 (A.3) 左辺の値は当然, $\overrightarrow{\text{R}_0\text{R}_1} \cdot \textbf{s}_1 >$ $\overrightarrow{\text{R}_0\text{R}_1} \cdot \textbf{s}_0$ のとき正の値で, $\overrightarrow{\text{R}_0\text{R}_1} \cdot \textbf{s}_1 < \overrightarrow{\text{R}_0\text{R}_1} \cdot \textbf{s}_0$ のとき負の値である。図 A.2 は, 後者を想定して 作図してある。

また, $\overrightarrow{R_0R_1} \cdot \mathbf{s}_1 = \overrightarrow{R_0R_1} \cdot \mathbf{s}_0$ となるように, \mathbf{R}_0 , \mathbf{R}_1 をとることができるはずである。この段落で は, $\overrightarrow{R_0R_1} \cdot \mathbf{s}_1 = \overrightarrow{R_0R_1} \cdot \mathbf{s}_0$ となるように, \mathbf{R}_0 , \mathbf{R}_1 を固定して議論する。図 A.2 とは違い, $|\overrightarrow{AR_1}|$ $= |\overrightarrow{R_0B}|$ の様子を考える。 \mathbf{R}_0 , \mathbf{R}_1 および黒とグ レーの光路が紙面にあるとき, \mathbf{R}_0 , \mathbf{R}_1 を含む紙 面に垂直な平面があるはずで, この平面上のどの 位置で散乱されても,光路長は同じである。この ことは,光が鏡で反射するとき,入射角と反射角 が同じである理由でもある。

ブラッグの反射条件では、まず、その平面上の どこで散乱されても光路の長さが同じのブラッグ 面を定義する。定義されたブラッグ面に対して入 射角と反射角が同じであれば光路長が同じであ る、という2次元の縛りを与えた上で、式 (A.1) ないしは式 (A.2) により3次元目の条件を与え るのがブラッグの反射条件である。シンプル見え る式 (A.1)式 (A.2)の背後には、1枚の平面に対 して入射角と反射角が等しい光路を考えたとき、 光路差は無い、という1次元目と2次元目の拘束 条件が潜んでいるのである。

さて,次の節への準備のため,以下のことを考 慮しておく。式 (A.3)の両辺をX線の波長 λ で 割り算して,次の式を得ることができる。

$$\overrightarrow{\mathbf{R}_0 \mathbf{R}_1} \cdot \left(\frac{\mathbf{s}_1}{\lambda} - \frac{\mathbf{s}_0}{\lambda}\right) = n_0. \tag{A.5}$$

上の式左辺に、式 (A.4) を代入し、入射波と反射 波の波数ベクトルが、 $\mathbf{K}_0 = \mathbf{s}_0 / \lambda$ および $\mathbf{K}_1 = \mathbf{s}_1 / \lambda$ であることを考慮すると、次の式が得られる。

$$(n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}) \cdot (\mathbf{K}_1 - \mathbf{K}_0) = n_0.$$
 (A.6)

A.3 エバルトの反射条件

A.3.1 エバルトの作図法の基礎

図 A.3 [p.25] は、逆格子原点 O と逆格子点 H_{hkl} が、エバルト球表面に載っている状況を示 している。P は、波数ベクトル **K**₀ と **K**₁ の共通 の始点で、エバルト球の中心である。

エバルトの反射条件の記述は,逆格子基本ベク トル **a***, **b***, **c*** を次のように定義するところか ら始める。

$$\mathbf{a}^* = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})},$$
 (A.7a)

$$\mathbf{b}^* = \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}, \qquad (A.7b)$$

$$\mathbf{c}^* = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}.$$
 (A.7c)

図 A.3 エバルト球

式 (A.7) [p.24] の分母 \mathbf{a} · ($\mathbf{b} \times \mathbf{c}$) [= \mathbf{b} · ($\mathbf{c} \times \mathbf{a}$) = \mathbf{c} · ($\mathbf{a} \times \mathbf{b}$)] は、 \mathbf{a} , \mathbf{b} , \mathbf{c} を稜とする平行 6 面体 の体積である。上の定義式から、明らかに次のこ とがいえる。

$$\mathbf{a} \cdot \mathbf{a}^* = 1, \qquad (A.8a)$$

$$\mathbf{b} \cdot \mathbf{b}^* = 1, \qquad (A.8b)$$

$$\mathbf{c} \cdot \mathbf{c}^* = 1. \tag{A.8c}$$

さらに $\mathbf{b} \times \mathbf{c}$ は, \mathbf{b} , \mathbf{c} を辺とする平行四辺形の面 積の大きさを持ち $\mathbf{b} \ge \mathbf{c}$ に対して垂直なベクト ルとして定義されている。 $\mathbf{c} \times \mathbf{a}$, $\mathbf{a} \times \mathbf{b}$ について も同様なので,次のことも明らかである。

$$\mathbf{a} \cdot \mathbf{b}^* = \mathbf{a} \cdot \mathbf{c}^* = 0, \qquad (A.9a)$$

$$\mathbf{b} \cdot \mathbf{c}^* = \mathbf{b} \cdot \mathbf{a}^* = 0, \qquad (A.9b)$$

 $\mathbf{c} \cdot \mathbf{a}^* = \mathbf{c} \cdot \mathbf{b}^* = 0. \tag{A.9c}$

すなわち式 (A.8), (A.9) のようになるように, 式 (A.7) [p.24] で **a**^{*}, **b**^{*}, **c**^{*} を定義したのである。

h k l 反射(*h k l* は整数)を与える逆格子点
 H_{hkl} は一般に次の式で表される。

$$\overrightarrow{OH}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*.$$
 (A.10)

ここで、O は逆格子原点である。表面に O が あり、中心が P、入射波の波数ベクトル \mathbf{K}_0 が $\mathbf{K}_0 = \overrightarrow{PO}$ となる球がエバルト球である。結晶を 回転させるか、入射X線の方向を変化させるかし てエバルト球を O を中心に回転させ、その表面 に逆格子点 H_{hkl} がのったとき, $\mathbf{K}_1 = \overrightarrow{OH_{hkl}}$ の 反射波が生じ,式 (A.10) から次の式が成り立つ。

$$\mathbf{K}_{1} - \mathbf{K}_{0} = \overrightarrow{\mathrm{OH}_{hkl}}$$
$$= h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*}. \qquad (A.11)$$

式 (A.6) [p.24] の左辺第2項に式 (A.11) を代 入し,式 (A.8)式 (A.9) を考慮して,式 (A.6) [p.24] 左辺を計算してみよう。

$$(n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}) \cdot (\mathbf{K}_1 - \mathbf{K}_0)$$

= $(n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}) \cdot (h \mathbf{a}^* + k \mathbf{b}^* + l \mathbf{c}^*)$
(A.12)
= $n_x h + n_y k + n_z l.$ (A.13)

n_xh + n_yk + n_zl は,明らかに整数であり,エバ ルトの反射条件(逆格子点がエバルト球の表面に のること)が満たされるとき,式(A.3)[p.23],式 (A.5)[p.24],式(A.6)[p.24]で表されるラウエの 反射条件が満たされる。すなわちエバルトの反射 条件とラウエの反射条件は等価なのである。先に 示したようにブラッグの反射条件とも等価である が,このことは次の節 A.3.2 の記述で,より明ら かになる。

ブラッグの反射条件は,図 A.1 [p.23] を参照 することで,簡単に理解できる。ラウエの反射 条件は,ブラッグの反射条件よりやや難解だが, 図 A.2 [p.24] を参照することで,やはり理解でき る。これらと等価な,逆空間と逆格子というもの を定義する作図法を編み出したのはエバルトであ る。逆格子と逆空間は,結晶学の問題を考える上 で,非常に強力なツールとなる。図 A.1 [p.23] や 図 A.2 [p.24] を描いていては複雑で考察できな い問題でも,逆空間内に逆格子とエバルト球を描 くことで簡単に理解できるケースが,結晶学には 数多く存在する。エバルト (Paul Peter Ewald, 1888/1/23~1985/8/22) に敬意を表した上で,図 A.3 のように,逆空間に逆格子とエバルト球を作 図する方法を大いに活用するべきである。

A.3.2 逆格子ベクトルとブラッグ反射面の関係

ところで,逆格子ベクトルはブラッグ反射面の 法線ベクトルで,式(A.2)[p.23]の*d* の逆数の 長さを持つベクトルである。このことを,以下の 記述で証明する。

図 A.4 ミラーの作図法とミラー指数

 $n_0 = n_x h + n_y k + n_z l$ と式 (A.10) を考慮して, (A.12)=(A.13) と置くことで次の式が得られる。

$$\overrightarrow{\text{OH}_{hkl}} \cdot (n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}) = n_0. \quad (A.14)$$

両辺に $1/|\overrightarrow{\mathrm{OH}_{hkl}}|$ をかけて

$$\frac{\overrightarrow{\mathrm{OH}_{hkl}}}{|\overrightarrow{\mathrm{OH}_{hkl}}|} \cdot (n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}) = \frac{n_0}{|\overrightarrow{\mathrm{OH}_{hkl}}|}.$$
(A.15)

[単位法線ベクトル] · [位置ベクトル] = [原点からの距離]. (A.16)

したがって式 (A.15) で $n_0 \in \{ \dots, -2, -1, 0, 1, 2, \dots \}$ であることは, 位置ベクトル $n_x \mathbf{a} + n_y \mathbf{b} + n_z \mathbf{c}$ が, 面間隔 $d'(=1/|\overrightarrow{\operatorname{OH}_{hkl}}|)$ で重なるブラッ グ反射面上にあることにほかならない。すなわち 逆格子ベクトル $\overrightarrow{\operatorname{OH}_{hkl}}$ は,大きさが 1/d' の,ブ ラッグ面法線ベクトルであることがわかる。

A.4 ミラーの作図法とミラー指数

図 A.4 は、ミラー指数 h,k,l とブラッグ面の 関係を示す図で、結晶学について記述したほぼ すべての教科書に掲載されている。この作図法 は、ミラー (William Hallows Miller; 1801/4/6-1880/5/20) によって考案されたものである。し かし、彼は 19 世紀の結晶学者 (というよりも鉱 物学者) であり、X線もX線回折という現象も発 見されるずっと前に活躍した人であることに,注 意を要する。ミラー指数を説明する図 A.4 は,ほ とんどすべての教科書に掲載されているが,この 作図法だけで結晶によるX線の回折を理解しよう とする立場は,全く勧められない。

図 A.4 に示す点 A, B, C は, **a**, **b**, **c** 軸上にあ り, 原点 O からの距離が a/h, b/k, c/l の点であ る。h, k, l が小さな整数になる **a**, **b**, **c** 軸を, あ らゆる鉱物に対して定義できる, というのがミ ラーの発見である。

h = 0のとき,点Aは,原点から無限遠にあ り,平面ABCは,**a**軸に平行である。このこと は,点Bと**b**の軸,点Cと**c**の軸に対しても同 様である。また,h = 0, k = 0のとき,点A,B が無限遠にあり,平面ABCは,**a**軸と**b**軸に平 行である。このことは,k = 0, l = 0のときの**b** 軸と**c**軸,およびl = 0, h = 0のときの**c**軸と**a** 軸に対しても同様である。

h, k, l は, 逆格子の指数にほかならないが, このことは, ミラーの発見から何 10 年もあとに なって, わかったことである。平面 ABC は, ブ ラッグ面に平行で原点 O からの距離はブラッグ 面間隔 d' に等しくなる。このことの証明を以下 に記述する。

図 A.4 から、 $\overrightarrow{AB} = -\mathbf{a}/h + \mathbf{b}/k$ であり、

 $\overrightarrow{AB} \cdot \overrightarrow{OH_{hkl}}$ は、次のように計算できる。

$$\overrightarrow{AB} \cdot \overrightarrow{OH_{hkl}} = (-\mathbf{a}/h + \mathbf{a}/k) \cdot (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)$$
$$= -1 + 1$$
$$= 0. \tag{A.17}$$

したがって、直線 AB が $\overrightarrow{OH_{hkl}} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$ に垂直であることが導かれ、同様に、直線 BC および直線 CA に対しても垂直であることから、 平面 ABC は、逆格子ベクトル (散乱ベクトル) $\overrightarrow{OH_{hkl}} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$ の法線であることがわ かる。

また,このことから,原点 O からの面 ABC の の距離はベクトル \overrightarrow{OA} , \overrightarrow{OB} または \overrightarrow{OC} と平面の 単位法線ベクトルの内積により求められ、

$$\overrightarrow{OA} \cdot \overrightarrow{OH_{hkl}} / |\overrightarrow{OH_{hkl}}|$$

$$= \frac{\mathbf{a}}{h} (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) / |\overrightarrow{OH_{hkl}}|$$

$$= 1 / |\overrightarrow{OH_{hkl}}|$$

$$= d'. \qquad (A.18)$$

上記のように、ミラーの作図法の解釈には、か なり煩雑な説明が必要であり、直感的な理解も困 難である。図 A.4 [p.26] の作図法は最も古く、歴 史的に重要であるため、多くの教科書に掲載され ているが、これによりブラッグ反射を理解しよう という立場は、全く勧められない。 To be continued

消滅則から空間群を求める

図 B.1 process.out の内容 (その 1)。試料結晶はタウリン [Taurine; monoclinic $P2_1/c(\#14)$]

単結晶構造解析において非常に重要なプロセス のひとつが,結晶の空間群決定である。低分子結 晶構造解析用の CrystalStructure 4.2 では図 B.3 に示すように,空間群の決定を自動的に行うよう になっている。

この章ではどのような情報からコンピューター が空間群を割り出しているのかを記述する。コン ピューターが決定した空間群が正しくないが故に 結晶構造が決まらないこともあるので,その場合 にはこの章に記述する手順に従って,手動で空間 群を決め直してやることが必要になる。

図 B.1, 図 B.2 および図 B.3 は, Part2a マニュ

==>	ref	lections	sorted	for	identifying	4n	type	condition	hs

a all	u b rep	resent	п, к, ог т					
Okl zone hOl zone hkO zone	a totl 106 37 69	+b=4n obsd 102 20 66	<i sig=""> 49.6 18.2 38.9</i>	5] a- totl 299 116 206	⊦b not eq obsd 281 71 192	ual 4n <1/sig> 50.1 30.8 48.8		
0k0 line 001 zone h00 zone	tot 8 4 1	a=4n obsd 8 2 1	<1/sig> 77.5 60.2 91.3	totl 25 15 8	a not eq obsd 11 7 8	ual 4n <i sig=""> 28.2 54.3 41.4</i>		
Hel refl	2h totl 34	+1=4n obsd 32	<i sig=""> 47.5</i>	2h- totl 116	+l not eq obsd 110 3p apd 6p	ual 4n <i sig=""> 59.9</i>		05
h-h01	h+l=3 totl 26	in;l odd obsd < 24	(1/sig> [6]	totl 54	h+l=3n obsd <1/ 52 64	sig> .6	h+l totl 97	not obs 89
h-h0l	-h+l=3 totl 26	obsd < 22	en (1/sig> 62.7	totl 49	-h+l=3n obsd <1/ 43 55	sig> .6	-h+l totl 102	not obs 98
		1=30			I DOT OG	131 30		

totl

0001 Line

101	line	e Z	Z	185.7	17	/	47.2			
	义	B.2	pro	cess.out	い内	容	(その	$2)_{\circ}$	試	
÷	斜糸	吉晶	はタ	ウリン	⁄ [Tau	rine	e: moi	noclii	nic	

<I/sig>

$P2_1/c(\#14)]$		

Spac	ce g	group ł	# 14	sett	ing #	1	
The	se	lected	space	group	symbol	is:	P21/c

図 B.3 process.out の内容 (その 3)。試料結晶はタウリン [Taurine; monoclinic $P2_1/c(\#14)$]。「setting #1」は図 B.5 [p.32] の「[8]CELL CHOICE 1」に対応する

アルの図 2.12 [p.6] の「View output file ボタン」 をクリックすることにより表示されるテキスト ファイル「process.out」の一部である。これに は、実験で得られた、結晶の消滅則に関する情報 が書かれている。

図 B.1 「[1]」の部分にはゼロでない 3 つの反 射指数,「[2]」「[3]」の部分にはゼロでない 2 つの

-					
結晶系 (Crystal system) ラウエ群 (空間群番号)	軸長(<i>a</i> , <i>b</i> , <i>c</i>) 軸間角(<i>α</i> , <i>β</i> , <i>γ</i>)	単純格子 (P, R)	底心格子 (A, B, C)	体心格子 (I)	面心格子 (F)
三斜晶 (triclinic) ī (#1,#2)	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	P Br			
単斜晶 (monoclinic) 2/m(#3~#15)	$a \neq b \neq c$ $\alpha, \beta, \gamma \text{ o j f}$ $2 \text{ o = 90^{\circ}}$ $1 \text{ o } (\beta) \neq 90^{\circ}$	P			
斜方晶 (=直方晶) (orthorhombic) mmm (#16~#74)	$a \neq b \neq c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$				
正方晶 (tetragonal) 4/m(#75~#88), 4/mmm(#89~#142)	a, b, c のうち 2 つが同じ 1 つが異なる $\alpha = \beta = \gamma$ = 90°				
三方晶 (trigonal), 3 (#143 -#148), 3 m(#149 ~#167)	$a = b = c$ $\alpha = \beta = \gamma$ $\neq 90^{\circ}$	P, R a and a a contraction			
六方晶 (hexagonal) 6/m(#168-#176) 6/mmm(#177-#194)	<i>a, b, c</i> のうち 2つが同じ 1 つが異なる <i>α, β, γ</i> のうち 2 つ=90° 1 つ(<i>y</i>)=120°	P c 120° a			
立方晶 (cubic) m3 (#195 ~#206) m3 m (#207 ~#230)	$a = b = c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$				

表 B.1 14 種類のブラベー格子 (Bravais lattice) と体心単斜晶格子。体心単斜晶格子を敢えて加 えた理由については, §B.2 [p.32] 最後の段落を参照

反射指数,「[4]」の部分にはゼロでない1つの反 射指数について,反射が生じているか消滅してい るかが示されている。例えば「[1]」の上部にある 「eeo」は hkl の指数が偶数 (even),偶数 (even), 奇数 (odd) であることを示している。「totl」は予 想された反射スポットの総数,「obsd」は観測さ れた反射スポットの数,「<I/sig>」は,観測され たピーク強度をバックグラウンドの標準偏差で割 り算した値の平均である。「[1]」の部分に示され ている「obsd」はいずれも大きな数で「<I/sig>」 も十分大きいことから,hkl の反射には特に消滅 が見られない。「[2]」「[3]」の一番右に記された 「<I/sig>」の値は l が奇数のとき小さく,h0l 反 射が消滅しているとコンピューターが認識したこ とを,この値の右隣に「*」マークを記述するこ

とで示している。また「[4]」の部分についても同 様で,一番右に記述された「% of o/e」の値も小 さいことから,0k0,00lの反射が k,l が奇数のと き消滅したと認識されている。

> Reflection conditions General: h0l : l = 2n0k0 : k = 2n00l : l = 2n

図 B.4 International Tables for Crystallography (2006) Vol.A に記載された $P2_1/c(\#14)$ の反射条件。k が奇数のとき 0k0 反射が, l が 奇数のとき h0l, 00l 反射が消滅することを示し ている 表 B.2 結晶の対称要素 (面)。タンパク質結晶 がこれらの対称要素を持つことは決してない

対称面の種類	文字記号	図形記号 (紙面に垂直)	図形記号 (紙面に平行)
鏡面 (Mirror plane)	т		\Box / \Box
軸映進面 (Axial glide plane)	<i>a, b</i> or <i>c</i>	ーーーーー 紙面に平行に グライド	
軸映進面 (Axial glide plane)	<i>a, b</i> or <i>c</i>		
二重映進面 (Double glide plane)	е	*************	F
対角映進面 (Diagonal glide plane)	п		r
ダイヤモンド映進面 (Diamond glide plane)	d	=:=:=:	Bel.

いしはそれらの和を4で割り算したときの情報 が、「[6]」の部分には、反射指数ないしはそれらの 和を3ないしは6で割り算したときの情報が示さ れている。これらの部分は、3回,4回,6回らせん 軸の有無に関する情報を記述している。「obsd」 と「<I/sig>」の値はいずれも大きく、3回,4回,6 回らせん軸による消滅が生じていないことを示し ている。

図 B.3 [p.29] は、上のことに基づいて、タウリン結晶の空間群が P2₁/c(#14) であると判断されたことを示している。

図 B.4 は, International Tables for Crystallography (2006) Vol.A に記された空間群 $P2_1/c(\#14)$ の反射条件である。図 B.1 [p.29] と図 B.2 [p.29] に書かれた情報がこれに一致する ことから,結晶の空間群が $P2_1/c(\#14)$ であるこ とが わかるのである。

以下,空間群で決まる結晶の対称性からどの ようにして反射の消滅が生じるかについて記述 する。

表 B.3 結晶の对称要素 (軸と点	表 B.3	結晶の対称要素 (軸と点)
-----------------------	-------	---------------

計が軸またけ占	立字詞旦	図形記号	図形記号
刈 柳軸 または尽	又于記方	(紙面に垂直)	(紙面に平行)
なし	1		
2回回転軸	2	•	*
2回らせん軸	21	ý	-
3回回転軸	3	A	
31らせん軸	31	À	
32らせん軸	32	_	
4回回転軸	4	•	F
41らせん軸	41	$\mathbf{\lambda}$	1
42らせん軸	42	٠	J-
43らせん軸	43	*	∭–
6回回転軸	6	•	
61らせん軸	61	*	
62らせん軸	62		
63らせん軸	63	¢	
64らせん軸	64	•	
65らせん軸	65		
対称中心	1	0	
3回回反軸	3	Δ	
4回回反軸	4	<₽	8—
6回回反軸	$\overline{6}$	۲	

B.1 群論から導かれた結晶の対称要素

結晶構造の決定に,群論がきわめて重要 であることを最初に示したのは西川正治 (S. Nishikawa; 1884/12/5~1952/1/5) で,西川の影 響を強く受けたワイコフ (R. W. G. Wyckoff; 1897/8/9~1994/11/3) がこれを体系化し完成さ せた。

表 B.1 に示すように,結晶はその単位胞の形 から7種類の結晶系に分類することができる。さ らに単純格子以外に,緑色の影で示すような複合 格子が存在する。赤枠で囲った体心単斜晶格子以 外の14種類の結晶格子を ブラベー格子 (Bravais lattice)という。

体心単斜晶格子は筆者(沖津; 27470, 090-2203-8789)の独断で敢えてこの表に加えた。

図 B.5 International Tables for Crystallography (2006) Vol.A の P2₁/c(#14) の表示。 タンパク質結晶ではこの空間群はあり得ない。

底心単斜晶格子の一部が, 軸の選び方により,単 位胞の体積が変わることなく,単斜晶の対称性を 損なうことなく体心格子になり得るというのが, その理由である。

表 B.1 の一番左の列には、ラウエ群と International Tables for Crystallography (2006) Vol.A, Chapter 7 に記述してある空間群番号の範囲を示 してある。ラウエ群とは結晶を逆格子の対称性に 応じて分類した群である。

表 B.1 [p.30],表 B.2 [p.31],表 B.3 [p.31] に 示す対称要素から,結晶は 230 種類の空間群に分 類されることがわかっている。

B.2 空間群の記号

図 B.5 は, International Tables for Crystallography (2006) Vol.A, Chapter 7 の中で空間 群 P2₁/c(#14) を示した最初のページである。 「[1] P2₁/c」は空間群のヘルマン-モーガン表記 [H-M 表記 (Hermann-Mouguin notation)],

「[2] C_{2h}^5 」はシェーンフリース表記 (Schönflies notation), 「[3] 2/m」はラウエ群, 「[4] Mon-

表 B.4 複合格子による消滅則

格子の名称	記号	反射条件(消滅しない条件)	例
A 底心格子	A	hkl: k+l=2n	A 12/n1 (#15)
B底心格子	В	hkl: h+l=2n	B 2/n11 (#15)
C 底心格子	С	hkl: h+k=2n	C 12/c1 (#15)
体心格子	Ι	hkl: h+k+l=2n	I 2/b11 (#15)
面心格子	F	hkl: h+k, h+l, k+l=2n	

表 B.5 映進面による消滅則。タンパク質結晶 が映進面を持つことは決してない

映進面の名称	云汁始	反射条件	石
(記号)	国在脉	(消滅しない条件)	194
軸映進面(a)	b	h0l: h = 2n	P 12 ₁ /a1 (#14)
軸映進面(a)	c	hk0: h = 2n	P 112 ₁ /a (#14)
軸映進面(b)	a	0kl: k = 2n	P21/b 11 (#14)
軸映進面(b)	c	hk0: k = 2n	P112 ₁ /b (#14)
軸映進面(c)	a	0kl: l = 2n	P21/c11 (#14)
軸映進面(c)	b	h0l: l = 2n	$ \begin{array}{c} P \ 12_1/c1(\#14) \\ C \ 12/c1 \ (\#15) \end{array} $
二重映進面(e)	a	hkl: k+l=2n	
二重映進面(e)	b	hkl: h+l=2n	
二重映進面(e)	c	hkl: h+k=2n	
対角映進面(n)	a	0kl: k+l=2n	<i>B</i> 2/ <i>n</i> 11 (#15)
対角映進面(n)	b	h0l: h+l=2n	C 12/c1 (#15)
対角映進面(n)	c	hk0: h+k=2n	<i>P</i> 112 ₁ / <i>n</i> (#14)

表 B.6 らせん軸による消滅則

らせん軸の名称	軸方向	反射条件 (消滅しない条件)	例
2 ₁ らせん軸	a	h00: h = 2n	P 2 ₁ 2 ₁ 2 ₁ (#19)
2 ₁ らせん軸	b	0k0: k=2n	$\begin{array}{c} P \ 12_1 \ 1 \ (\#4) \\ P \ 12_1/c1 \ (\#14) \\ \hline C \ 12/c1 \ (\#15) \\ P \ 2_12_12_1 \ (\#19) \end{array}$
2 ₁ らせん軸	c	00l: l = 2n	$P 2_1 2_1 2_1 (\#19)$
31らせん軸	c	00l: l = 3n	
32らせん軸	c	00l: l = 3n	
41らせん軸	c	00l: l = 4n	<i>P</i> 4 ₁ 2 ₁ 2 (#92)
4 ₂ らせん軸	c	00l: l = 2n	
43らせん軸	c	00l: l = 4n	P 4 ₃ 2 ₁ 2 (#96)
6 ₁ らせん軸	c	00l: l = 6n	
62らせん軸	c	00l: l = 3n	
63らせん軸	c	00l: l = 2n	
64らせん軸	c	00l: l = 3n	
65らせん軸	c	00l: l = 6n	
62 らせん軸 63 らせん軸 64 らせん軸 65 らせん軸	c c c c	$\begin{array}{c} 00l: \ l = 3n \\ 00l: \ l = 2n \\ 00l: \ l = 3n \\ 00l: \ l = 6n \end{array}$	

表 B.7 International Tables for Crystallography (2006) Vol.A, Chapter 3.1 の一部

	MONOCLINIC.	Laue cla	ss $2/m$
--	-------------	----------	----------

Unique axis b		Laue class 1 2/m 1				
Reflection c	ondition			Point grou	Point group	
hkl 0kl hk0	h0l h00 00l	0k0	Extinction symbol	2	m	2/m
			P1-1	P121 (3)	P1m1 (6)	P1 2/m 1 (10)
		k	P1211	P1211 (4)		P1 2 ₁ / <i>m</i> 1 (11)
	h		P1a1		P1a1 (7)	P1 2/a 1 (13)
[1]	h	k	<i>P</i> 1 $2_1/a$ 1			$P1 2_1/a 1 (14)$
	l		P1c1		P1c1 (7)	P1 2/c 1 (13)
[2]	l	k	$P1 \ 2_1/c \ 1$			$P1 2_1/c 1 (14)$
	h + l		P1n1		P1n1(7)	$P1 \ 2/n \ 1 \ (13)$
[3]	h+l	k	$P1 \ 2_1/n \ 1$			$P1 \ 2_1/n \ 1 \ (14)$
h + k	h	k	C1-1	C121 (5)	C1m1 (8)	C1 2/m 1 (12)
h + k	h, l	k	C1c1		C1c1 (9)	C1 2/c 1 (15)
k + l	l	k	A1-1	A121 (5)	A1m1 (8)	A1 2/m 1 (12)
k + l	h, l	k	A1n1		A1n1 (9)	A1 2/n 1 (15)
h + k + l	h+l	k	11-1	<i>I</i> 121 (5)	I1m1 (8)	<i>I</i> 1 2/ <i>m</i> 1 (12)
h + k + l	h, l	k	<i>I</i> 1 <i>a</i> 1		11a1 (9)	<i>I</i> 1 2/ <i>a</i> 1 (15)

oclinic」は結晶系,「5] No. 14」は空間群番号, 「[6] P121/c1」は省略なしのヘルマン-モーガン表 記 [H-M フル表記 (Hermann-Mouguin full notation)],「[7] UNIQUE AXIS b」は紙面が b 軸 に垂直であること,「[9]」「[13]」「[14]」は*c*映進 面の記号で、「[9]」の傍らにある $\frac{1}{4}$ は映進面の 高さである。「[8] CELL CHOICE 1」は単位胞 の選び方の番号で図 B.3 [p.29] の「setting #1」 に対応する。「[10]」「[12]」は21らせん軸の記号 である。「[15] 原子」の 21 らせん軸による像は 「[16] 原子」,「[15] 原子」の c 映進面による像は 「[17] 原子」である。「[15] 原子」の位置ベクトル が $x\mathbf{a} + y\mathbf{b} + z\mathbf{c}$ のとき, [16] 原子」の位置ベク トルは $-x\mathbf{a} + (\frac{1}{2} + y)\mathbf{b} + (\frac{1}{2} - z)\mathbf{c}$ で,「[17] 原子」 の位置ベクトルは $x\mathbf{a} + (\frac{1}{2} - y)\mathbf{b} + (\frac{1}{2} + z)\mathbf{c}$ と なることが傍らの数字と記号で示されている。ま た, 「[15] 原子 (分子)」「[16] 原子 (分子)」が () 記 号で示される右手系であれば「[17] 原子 (分子)」 は左手系であることが () 記号の中にコンマ (,) を打つことによって示されている。

H-M フル表記の最初の文字は表 B.1 [p.30] 第 1 行目の括弧内に示されている記号で,単純格 子のとき P(三方晶以外と三方晶の一部)または R(三方晶の一部),底心格子のとき底心面がどれ であるかに応じて A, B, C, 体心格子のとき I, 面心格子のとき F となる。a, b, c 軸の取り方の 任意性から底心格子の A, B, C の記号は同じ空 間群でも入れ替わることができる。底心格子を代 表する H-M 表記は多くの場合 C だが例外が 4 つ ある [Amm2(#38), Abm2(#39), Ama2(#40), Aba2(#41)]。

省略なし H-M 表記の「P12₁/c1」は, a 軸 と *c* 軸方向の対称要素がなし (1), *b* 軸方向の 対称要素が 21 らせん軸 (21) と c 映進面 (c) で あることを示している。対称要素がないこと は通常省略して書くことになっており、14番 の空間群の H-M 表記は「*P2*₁/*c*」となる。*a*, *b*, *c* 軸の取り方には任意性があるため, 14 番 の空間群の省略なし H-M 表記は、P121/c1、 $P12_1/n1$, $P12_1/a1$, $P112_1/a$, $P112_1/n$, $P112_1/b, P2_1/b11, P2_1/n11, P2_1/c11 の 9 通$ り存在する。 同じ番号の空間群でも、一般に 複数の省略なし H-M 表記が存在する。ただし, $P2_12_12_1$ (orthorhombic #19) のように a, b, c 軸方向の対称要素が同じであることから H-M フ ル表記が P212121 の一通りだけになる場合も ある。

空間群番号 15 (図 B.8[p.34]) の省略した H-M 表記は C2/c で, H-M フル表記は C12/c1 だが, 単位胞の取り方を変えると *I*12/a1 となる。表 B.1 [p.30] の中に,赤枠で囲った体心単斜晶格子 を加えたのはこのためである。

B.3 消滅則の読み方

この節では,低分子結晶の場合に図 B.1 [p.29] と図 B.2 [p.29] に示した process.out の中身を読 んで, *International Tables for Crystallography* (2006) Vol.A, Chapter 3.1 と照らし合わせなが ら空間群を決める方法について説明する。

表 B.7 は International Tables for Crystallography (2006) Vol.A, Chapter 3.1 の中で, 消滅則 と空間群の関係を示した表の一部である。これの pdf ファイルをパソコンのデスクトップ上の「International Tables for Crystallography (2006)」 のアイコンの中に置いてあるので, 活用すると

図 B.6 CrystalStructure 4.2 で空間群を指定 し直す (低分子結晶の場合)

よい。

低分子結晶の場合,図 B.1 [p.29] 「[1]」の部分 には,ゼロの指数を持たない hkl 反射の消滅の有 無を示している。hkl が偶数 (e) か奇数 (o) かに 関わらず消滅は見られないので,表 B.7 の一番左 の列「 $hkl \ 0kl \ hk0$ 」の欄が空白の行が該当する。 この列の「h + k」「h + l」「h + k + l」の表記に は,すべて「= 2n」が省略されており,これらの 指数の和が奇数になったとき,反射が消滅するこ とを示している。第 2 列目,3 列目についても同 様である。

低分子結晶の場合,図 B.1 [p.29] 「[2]」「[3]」 の部分は、1 つの指数がゼロの場合の消滅の有無 で、h0l 反射がlが奇数のとき消滅していること を示している。図 B.1 [p.29] 「[4]」部分は、2 つ の指数がゼロの場合の消滅の有無で、0k0 反射 がkが奇数のときと 00l 反射がlが奇数のとき消 滅していることを示している。したがって表 B.7 [p.33] の第2列と第3列目にそれぞれl(=2n) と k(=2n)が入っている行が該当することになり、 表 B.7 [p.33] に「[2]」で示した、H-M フル表記 $P12_1/c1$ 、省略した H-M 表記では $P2_1/c(\#14)$ の空間群であることが割り出される。「[1]」「[3]」 の行もまた、単位胞の取り方の違いにより H-M フル表記が異なるものの、省略した H-M 表記は 同じく $P2_1/c(\#14)$ である。

図 B.7 International Tables for Crystallography (2006) Vol.A P1(#2)。対称中心を持つ ため,この空間群はタンパク質結晶ではあり得 ない。位相問題は単純である

図 B.8 International Tables for Crystallography (2006) Vol.A C12/c1[C2/c](#15)。映 進面を持つため、この空間群はタンパク質結晶 ではあり得ない

低分子結晶の場合, CrystalStructure 4.2 で空 間群を指定するには、図 B.6 のように「Parameters メニュー」から「Space Group」を選択し て「Space Group Menu ウィンドウ」を開く。表 B.7 [p.33]「[1]」「[2]」「[3]」に示された, H-M フル 表記 $P12_1/a1$, $P12_1/c1$, $P12_1/n1$ がいずれもメ ニューの中にあるが、消滅則にしたがって $P2_1/c$ を選択し「Apply」「OK」の順にクリックする。

B.4 対称要素の組み合わせによる消滅則の実例

表 B.4, B.5, B.6 [p.32] に一覧にした対称要素 の組み合わせにより, 消滅則がどのようになるか の具体例を記述する。

低分子の有機物結晶の空間群を多い順に あげると、P2₁/c(#14)、P1(#2)、C2/c(#15)、

⊠ B.9 International Tables for Crystallography (2006) Vol.A P2₁2₁2₁(#19)

 \boxtimes B.10 International Tables for Crystallography (2006) Vol.A P12₁1[P2₁(#4)]

*P*2₁2₁2₁(#19), *P*2₁(#4) で この 5 つの空間群 だけで低分子有機物のおよそ 80% を占める。

ただしタンパク質結晶の場合,PI(#2), $P2_1/c(#14)$, C2/c(#15)の空間群はあり得な い。空間群のヘルマン-モーガン表記の中に対称 中心を表すIの記号,鏡面を表すmの記号,映 進面を表すa, b, c, d, e, n の記号を持つものは, 鏡像の分子を必要とするため、タンパク質結晶 ではあり得ないのである。低分子でもキラルな分 子の片方 (L体ないしは D体)だけからなる結晶 は、鏡面と映進面は持ち得ないのである。L体と D体を同じだけ持つラセミ体結晶の場合は、鏡面 と映進面の記号を持つ空間群は多々ある。

上記の5つの空間群の対称要素がどのような消 滅則を与えるかを,表 B.4, B.5, B.6 [p.32] を参 照しながら以下に記述する。

B.4.1 単斜晶 $P12_11[P2_1/c(\#14)]$

空間群 P2₁/c(H-M フル表記 P12₁/c1) の対称 要素は,表 B.5 [p.32] に示す c 映進面と表 B.6 [p.32] に示す **b** 軸方向の 2₁ らせん軸である。 このことは図 B.5 [p.32] から読み取ることがで きる。

消滅則は消滅しない条件を, hkl すべての指数 がゼロでないとき, 1 つの指数がゼロのとき, 2 つ の指数がゼロのときに分けて記述することになっ ており,映進面とらせん軸による消滅則をこの規 則に則って記述すると以下のようになる。

h0l:	l=2n,
0k0:	k=2n,
00l:	l=2n.

これは図 B.4 [p.30] のように, International Tables for Crystallography (2006) Vol.A に記載さ れている。

B.4.2 三斜晶 $P\overline{1}(#2)$

図 B.7 から *P*1(#2) にある対称要素は対称中 心だけであり,映進面もらせん軸も存在しない単 純格子であるため,反射の消滅はない。対称中心 を持つため,タンパク質結晶やキラルな分子の結 晶ではあり得ない。

ただし,対称中心を持つ結晶では位相問題が符 号だけの2値問題となり,三斜晶 PĪ(#2)の結晶 は,品質が悪くても分子構造が決定されることが 多々ある。

B.4.3 単斜晶 C12/c1[C2/c(#15)]

*C*12/*c*1 は,記号が*C* で始まっていることから 底心格子である。図 B.8 の小さな白丸は対称中 心で *P*1(#2)と同様,位相問題が簡単なため高い 確率で正しい分子構造にたどり着ける。

軸のとり方によって A 底心格子, B 底心格子, C 底心格子があり得るだが,ここでは C 底心格 子であるとして記述する。表 B.4 [p.32] に示した 反射条件を hkl のすべての指数がゼロでない,1 つの指数がゼロ,2つの指数がゼロ,のすべての 場合に分けて書くと, [hkl: h + k = 2n], [hk0: h + k = 2n], [h0l: h = 2n], [0kl: k = 2n], [h00: h = 2n], [0k0: k = 2n] となる。

図 B.8 から **b** 軸を法線とする *c* 映進面と *n* 映 進面, **b** 軸に平行な 2₁ らせん軸がある。

表 B.5 [p.32] から c 映進面と n 映進面による

反射条件の両方を満たすとき, [h0l: h,l = 2n] となる。また表 B.6 [p.32] から b 方向の 2₁ らせ ん軸による反射条件は, [0k0: k = 2n] となる。

これらの条件の論理積を書き下すと以下のよう になる。

hkl:	h+k=2n,
h0l:	h, l = 2n,
0kl:	k=2n,
hk0:	h+k=2n,
0k0:	k=2n,
h00:	h=2n,
00l:	l=2n.

B.4.4 **斜方晶** $P2_12_12_1(\#19)$

図 B.9 [p.35] から *P*2₁2₁2₁(#19) は, *a*, *b*, *c* 軸 すべての方向に 2₁ らせん軸を持つことがわかる。 表 B.6 [p.32] を参照して反射条件は次のように与 えられる。

h00:	h=2n,
0k0:	k=2n,
00l:	l=2n.

B.4.5 単斜晶 $P12_11[P2_1(#4)]$

*P*2₁(#4) は,軸のとり方によって H-M フル表 記が *P*12₁1, *P*112₁, *P*2₁11 の 3 通りがあるのだ が,ここでは,*P*12₁1 について記述する。

図 B.10 [p.35] から *P*12₁1 は, **b** 軸方向の 2₁ らせん軸を持っており,表 B.6 [p.32] から次のよ うに反射条件が与えられる。

 $0k0: \quad k=2n.$

B.5 消滅則の数学的証明

この節は,時間があるときに参考までに読むと よい。

表 B.1[p.30], B.2[p.31], B.3[p.31] で,緑色で 示された対称要素,すなわち,複合格子,映進面, らせん軸の存在によって反射が消滅する。逆にい えば消滅則を与えるのは,この3種類の対称要素 だけである。ただし,タンパク質結晶の場合には 映進面は決してあり得ない。以下,これらによっ てどのように消滅が生じるかを記述する。 まず下準備として, *hkl* 反射の構造因子 *F_{hkl}* の 定義式を示す。

$$F_{hkl} = \int_{cell} \rho(\mathbf{r}) \exp[-i2\pi(\mathbf{h} \cdot \mathbf{r})] dv.$$
$$= \int_{cell} \rho(\mathbf{r}) \exp[-i2\pi(hx + ky + lz)] dv.$$
(B.1)

ここで、 $\int_{cell} dv$ は単位胞 1 つにわたる体積積分、 $\rho(\mathbf{r})$ は単位胞内の位置 $\mathbf{r} (= x\mathbf{a}+y\mathbf{b}+z\mathbf{c})$ におけ る電子密度、 $\mathbf{h}(=h\mathbf{a}^* +k\mathbf{b}^*+l\mathbf{c}^*)$ は反射を与え る逆格子ベクトルである。逆格子については、付 録 A [p.23] を参照。

N 個の等価な点を作る対称要素は次のように 表される。

$$\rho[T^{(i)}(\mathbf{r})] = \rho[T^{(0)}(\mathbf{r})], \quad i \in \{0, 1, \cdots, N-1\}.$$

 F_{hkl} がゼロになるには,式 (B.1)の積分をするに
あたって,対称要素による N 個の等価な点に対
する積分要素の和がゼロになればよいので,

$$\sum_{i=0}^{N-1} \rho[T^{(0)}(\mathbf{r})] \exp[-i2\pi \mathbf{h} \cdot T^{(i)}(\mathbf{r})] = 0$$

すなわち

$$\sum_{i=0}^{N-1} \exp[-i2\pi \mathbf{h} \cdot T^{(i)}(\mathbf{r})] = 0$$
 (B.2)

となる。このことを基本に以下の記述をする。

B.5.1 複合格子による消滅

表 B.4 [p.32] に複合格子による消滅則を一覧 にしてある。以下,底心,体心,面心の複合格子 によってなぜこのような消滅則が生じるかを記述 する。

B.5.1.1 底心格子による消滅

C 底心格子の対称性は、次の式で表される。

$$\rho[T_C^{(i)}(\mathbf{r})] = \rho[T_C^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}.$$

$$T_C^{(0)}(\mathbf{r}) = x\mathbf{a} + y\mathbf{b} + z\mathbf{c},$$

$$T_C^{(1)}(\mathbf{r}) = (x + \frac{1}{2})\mathbf{a} + (y + \frac{1}{2})\mathbf{b} + z\mathbf{c}$$

式 (B.2) のように消滅条件を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_C^{(i)}(\mathbf{r})] = 0.$$
 (B.3)

 $f_C(\mathbf{h}, \mathbf{r})$ を次のように定義する。

$$f_C(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi [h(x + \frac{1}{4}) + k(y + \frac{1}{4}) + lz]\}.$$

 $f_C(\mathbf{h}, \mathbf{r})$ で式 (B.3) の \sum の中身をくくると消滅 条件として次の式が得られる。

$$f_C(\mathbf{h}, \mathbf{r})$$

$$\times \{ \exp[-i\frac{\pi}{2}(h+k)] + \exp[+i\frac{\pi}{2}(h+k)] \}$$

$$= 2f_C(\mathbf{h}, \mathbf{r}) \cos[\frac{\pi}{2}(h+k)] = 0.$$

 $f_C(\mathbf{h}, \mathbf{r})$ は一般にゼロでないので、消滅条件は次 のようになる。

$$\cos[\frac{\pi}{2}(h+k)] = 0$$

h+*k* が奇数のとき上の式を満たすので、反射条 件 (反射が消滅しない条件) は,表 B.4 [p.32] の ように

$$hkl:$$
 $h+k=2n$

と導かれる。ここで、1は任意である。

A 底心格子, B 底心格子の場合の反射条件も上 と同様にして導くことができる。

B.5.1.2 体心格子による消滅

体心格子 (I) の対称性は、次の式で表される。

$$\begin{split} \rho[T_I^{(i)}(\mathbf{r})] &= \rho[T_I^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}. \\ T_I^{(0)}(\mathbf{r}) &= x\mathbf{a} + y\mathbf{b} + z\mathbf{c}, \\ T_I^{(1)}(\mathbf{r}) &= (x + \frac{1}{2})\mathbf{a} \\ &+ (y + \frac{1}{2})\mathbf{b} \\ &+ (z + \frac{1}{2})\mathbf{c}. \end{split}$$

式 (B.2) のように消滅条件を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_I^{(i)}(\mathbf{r})] = 0.$$
 (B.4)

ここで式 (B.3) の ∑ を計算しやすいように ここで式 (B.4) の ∑ を計算しやすいように $f_I(\mathbf{h}, \mathbf{r})$ を次のように定義する。

$$f_I(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi \left[h\left(x + \frac{1}{4}\right) + k\left(y + \frac{1}{4}\right) + l\left(z + \frac{1}{4}\right)\right]\}$$

 $f_I(\mathbf{h}, \mathbf{r})$ で式 (B.4) の \sum の中身をくくると消滅 条件として次の式が得られる。

$$f_{I}(\mathbf{h}, \mathbf{r}) \times \\ \{ \exp[-i\frac{\pi}{2}(h+k+l)] \\ + \exp[+i\frac{\pi}{2}(h+k+l)] \} \\ = 2f_{I}(\mathbf{h}, \mathbf{r}) \cos[\frac{\pi}{2}(h+k+l)] = 0$$

 $f_I(\mathbf{h}, \mathbf{r})$ は一般にゼロでないので、消滅条件は次 のようになる。

$$\cos[\frac{\pi}{2}(h+k+l)] = 0.$$

h + k + lが奇数のとき上の式を満たすので、反 射条件 (反射が消滅しない条件) は,表 B.4 [p.32] のように

$$hkl: \qquad h+k+l=2n$$

と導かれる。

B.5.1.3 面心格子による消滅

面心格子 (F)の対称性は、次の式で表される。

$$\begin{split} \rho[T_F^{(i)}(\mathbf{r})] &= \rho[T_F^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2, 3\}.\\ T_F^{(0)}(\mathbf{r}) &= x\mathbf{a} + y\mathbf{b} + z\mathbf{c},\\ T_F^{(1)}(\mathbf{r}) &= x\mathbf{a} + (y + \frac{1}{2})\mathbf{b} + (z + \frac{1}{2})\mathbf{c},\\ T_F^{(2)}(\mathbf{r}) &= (x + \frac{1}{2})\mathbf{a} + y\mathbf{b} + (z + \frac{1}{2})\mathbf{c},\\ T_F^{(3)}(\mathbf{r}) &= (x + \frac{1}{2})\mathbf{a} + (y + \frac{1}{2})\mathbf{b} + z\mathbf{c}. \end{split}$$

式 (B.2) のように消滅条件を記述すると

$$\sum_{i=0}^{3} \exp[-i2\pi \mathbf{h} \cdot T_{F}^{(i)}(\mathbf{r})] = 0.$$
 (B.5)

ここで式 (B.5) の \sum を計算しやすいように $f_F(\mathbf{h}, \mathbf{r})$ を次のように定義する。

$$f_F(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi [h(x + \frac{1}{4}) + k(y + \frac{1}{4}) + l(z + \frac{1}{4})]\}$$

f_F(**h**,**r**) で式 (B.5) [p.37] の ∑ の中身をくくる と消滅条件として次の式が得られる。

$$f_{F}(\mathbf{h}, \mathbf{r}) \{ \exp[-i\frac{\pi}{2}(-h-k-l)] + \exp[-i\frac{\pi}{2}(-h+k+l)] + \exp[-i\frac{\pi}{2}(+h-k+l)] + \exp[-i\frac{\pi}{2}(+h+k-l)] \} \quad (B.6)$$

$$= 2f_{F}(\mathbf{h}, \mathbf{r}) \{ \exp(+i\frac{\pi}{2}h) \cos[\frac{\pi}{2}(k+l)] + \exp(-i\frac{\pi}{2}h) \cos[\frac{\pi}{2}(k-l)] \} = 0.$$
(B.7)

 $f_F(\mathbf{h}, \mathbf{r})$ は一般にゼロでないので、消滅条件は次のようになる。

$$\cos\left[\frac{\pi}{2}(k+l)\right] = 0$$
$$\cos\left[\frac{\pi}{2}(k-l)\right] = 0$$

k + lが偶数であることとk - lが偶数であるこ とは,k, lがいずれも偶数かいずれも奇数である ことと等値で,k + l = 2nで表される。hは任意 である。式 (B.6) がh, k, lについて対称である ことからh + k, h - kおよびh + l, h - lにつ いても式 (B.7) と同様な式を導くことができるの で,反射条件 (反射が消滅しない条件) は,表 B.4 [p.32] のように

$$\begin{aligned} hkl : & h+k = 2n, \\ hkl : & h+l = 2n, \\ hkl : & l+k = 2n, \end{aligned}$$

と導かれる。すなわち, *h*, *k*, *l* に偶数と奇数が混 在したとき反射は消滅する。

B.5.2 映進面による消滅

タンパク質結晶の場合は,分子が L アミノ酸のみで構成されておりその光学異性体である D

アミノ酸を持たないため,映進面を持つことは ない。

B.5.2.1 軸映進面による消滅

b 軸を法線とする高さ $\frac{1}{4}$ **b** にある c 映進面に よる対称性は次のように表される。

$$\begin{split} \rho[T_{Bc}^{(i)}(\mathbf{r})] &= \rho[T_{Bc}^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}.\\ T_{Bc}^{(0)}(\mathbf{r}) &= x\mathbf{a} + y\mathbf{b} + z\mathbf{c},\\ T_{Bc}^{(1)}(\mathbf{r}) &= x\mathbf{a} + (\frac{1}{2} - y)\mathbf{b} + (\frac{1}{2} + z)\mathbf{c}, \end{split}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_{Bc}^{(i)}(\mathbf{r})] = 0.$$
 (B.8)

ここで式 (B.8) の \sum を計算しやすいように $f_{Bc}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{Bc}(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi[hx + k\frac{1}{4} + l(\frac{1}{4} + z)]\}.$$

 $f_F(\mathbf{h}, \mathbf{r})$ で式 (B.8) の \sum の中身をくくると消滅 条件として次の式が得られる。

$$\begin{split} f_{Bc}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp\{+i2\pi [k(\frac{1}{4} - y) + l\frac{1}{4}]\} \\ & + \exp\{-i2\pi [k(\frac{1}{4} - y) + l\frac{1}{4}]\} \right\} \\ & = 2f_{Bc}(\mathbf{h}, \mathbf{r}) \cos\{\frac{\pi}{2} [k(1 - 4y) + l]\} = 0. \end{split}$$

 $f_F(\mathbf{h}, \mathbf{r})$ は一般にゼロではないので cos{ } の項 がゼロになる条件が消滅条件を与える。それは, hは任意,k = 0, lが奇数のときなので,反射条 件 (消滅しない条件)は,表 B.5 [p.32] のように

h0l: l=2n

と導かれる。他の軸映進面についても同様にして 表 B.5 [p.32] に示す消滅則が導かれる。

B.5.2.2 二重映進面 (e 映進面) による消滅

二重映進面 (e 映進面) は **b** 軸を法線とする場 合, 映進面に映った像が $\frac{1}{2}$ **a** 方向と $\frac{1}{2}$ **c** 方向の 両方にグライドする対称要素である。グライドし た像がもういちど映進面に映ってそれぞれ $\frac{1}{2}$ **c** 方向と $\frac{1}{2}$ **a** 方向にグライドした像を含め, 4 つ の等価点があることになる。 したがって,高さゼロにある b 軸を法線とする 二重映進面 (e 映進面) の対称性は次のように表 される。

$$\begin{split} \rho[T_{Be}^{(i)}(\mathbf{r})] &= \rho[T_{Be}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2, 3\}.\\ T_{Be}^{(0)}(\mathbf{r}) &= x\mathbf{a} + y\mathbf{b} + z\mathbf{c},\\ T_{Be}^{(1)}(\mathbf{r}) &= (x + \frac{1}{2})\mathbf{a} - y\mathbf{b} + z\mathbf{c},\\ T_{Be}^{(2)}(\mathbf{r}) &= x\mathbf{a} - y\mathbf{b} + (z + \frac{1}{2})\mathbf{c},\\ T_{Be}^{(3)}(\mathbf{r}) &= (x + \frac{1}{2})\mathbf{a} + y\mathbf{b} + (z + \frac{1}{2})\mathbf{c}, \end{split}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{3} \exp[-i2\pi \mathbf{h} \cdot T_{Be}^{(i)}(\mathbf{r})] = 0.$$
 (B.9)

ここで式 (B.9) の \sum を計算しやすいように $f_{Be}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{Be}(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi [h(\frac{1}{4} + x) + l(\frac{1}{4} + z)]\}$$

$$f_F(\mathbf{h}, \mathbf{r}) \ \mathcal{C} \overrightarrow{\mathbf{x}} \ (B.9) \ \mathcal{O} \sum \mathcal{O} \mathbf{p} \mathbf{p} \mathbf{s} \mathbf{\xi} \mathbf{\zeta} \mathbf{\zeta} \mathbf{\delta} \mathbf{\xi} \ddot{\mathbf{k}} \mathbf{k}$$

条件として次の式が得られる。

$$\begin{aligned} f_{Be}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp\{-i2\pi[-h\frac{1}{4} + ky - l\frac{1}{4}]\} \\ & + \exp\{-i2\pi[+h\frac{1}{4} - ky - l\frac{1}{4}]\} \\ & + \exp\{-i2\pi[-h\frac{1}{4} - ky + l\frac{1}{4}]\} \\ & + \exp\{-i2\pi[-h\frac{1}{4} - ky + l\frac{1}{4}]\} \right\} \\ & = 2f_{Be}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp(-i2\pi ky) \cos[\frac{\pi}{2}(h+l)] \\ & + \exp(+i2\pi ky) \cos[\frac{\pi}{2}(h-l)] \right\} = 0 \end{aligned}$$

 $f_{Be}(\mathbf{h}, \mathbf{r})$ および $\exp(\pm i2\pi ky)$ は一般にゼロでは ないので上の消滅条件を満たすのは、 $\cos[\frac{\pi}{2}(h + l)] = 0$ および $\cos[\frac{\pi}{2}(h - l)] = 0$ のときである。 $h + l \ge h - l$ が奇数のとき反射が消滅すること になり、それは k は任意、h と k が、いずれも偶 数か、いずれも奇数のときなので、反射条件 (消 滅しない条件) は

$$hkl: h+l=2n$$

他の二重映進面についても同様な手順で表 B.5 [p.32] に示すような消滅則を導くことができる。 B.5.2.3 対角映進面 (*n* 映進面) による消滅

b 軸を法線とする高さゼロにある対角映進面 (*n* 映進面)による対称性は次のように表される。

$$\rho[T_{Bn}^{(i)}(\mathbf{r})] = \rho[T_{Bn}^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}.$$

$$T_{Bn}^{(0)}(\mathbf{r}) = x\mathbf{a} + y\mathbf{b} + z\mathbf{c},$$

$$T_{Bn}^{(1)}(\mathbf{r}) = (\frac{1}{2} + x)\mathbf{a} - y\mathbf{b} + (\frac{1}{2} + z)\mathbf{c}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_{Bn}^{(i)}(\mathbf{r})] = 0.$$
 (B.10)

ここで式 (B.10) の \sum を計算しやすいように $f_{Bn}(\mathbf{h}, \mathbf{r})$ を次のように定義する。

$$f_{Bn}(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi[h(\frac{1}{4} + x) + l(\frac{1}{4} + z)]\}$$

f_{Bn}(**h**,**r**) で式 (B.10) の ∑ の中身をくくると消 滅条件として次の式が得られる。

$$f_{Bn}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp\{-i2\pi [-h\frac{1}{4} + ky - l\frac{1}{4}]\} + \exp\{-i2\pi [h\frac{1}{4} - ky + l\frac{1}{4}]\} \right\} \\ = 2f_{Bn}(\mathbf{h}, \mathbf{r}) \cos\{\frac{\pi}{2} [4ky - (h+l)]\} = 0.$$

 $f_{Bn}(\mathbf{h}, \mathbf{r})$ は一般にゼロではないので cos{ } の項 がゼロになる条件が消滅条件を与える。それは, k = 0, h+lが奇数なので,表 B.5 [p.32] のよう に反射条件 (消滅しない条件) は

$$h0l: \quad h+l=2n$$

と導かれる。他の対角映進面についても同様にして表 B.5 [p.32] に示す消滅則が導かれる。

B.5.3 らせん軸による消滅

表 B.6 [p.32] には p_q らせん軸 [$p \in \{2,3,4,6\}, 1 \leq q \leq (p-1)$] による消滅則を 一覧にしてある。c 軸方向の p_q らせん軸は、元の 像を含めて p 個の等価な点を作る対称要素で、i番目 [$i \in \{0,1,\cdots,p-1\}$] の点 $T_{p_q}^{(i)}(\mathbf{r})$ は、**r** を 軸周りに $2\pi \times i/p$ 回転させると同時に (iq/p)c だ け並進させる。表 B.6 [p.32] に示すように, 2₁, 4₂, 6₃ のらせん軸は, c 軸方向に c/2 の間隔の原 子 (分子) の層を作るため, [00l: l = 2n] の反 射条件 (消滅しない条件) を与える。

同様に、 3_1 , 3_2 , 6_2 , 6_4 のらせん軸は [000l: l = 3n], 4_1 , 4_3 のらせん軸は [00l: l = 4n], 6_1 , 6_5 のらせん軸は [000l: l = 6n] の反射条件を与 える。3 回および 6 回らせん軸による消滅則の数 学的証明については付録 C [p.43] を参照。

以下, 2₁, 4₁, 4₂ らせん軸による消滅則につい て厳密な証明を記述する。らせん軸による消滅 は、らせん軸に平行な逆格子基本並進ベクトルが 存在するときに生じるが,そうでないときには消 滅はない。これについては,付録 C §C.1.4 [p.45] を参照。

B.5.3.1 らせん軸 (2₁) による消滅

 $\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ の位置にある \mathbf{c} 方向の 2_1 らせん 軸の対称は次のように記述される。

$$\rho[T_{2_1}^{(i)}(\mathbf{r})] = \rho[T_{2_1}^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}.$$

$$T_{2_1}^{(0)}(\mathbf{r}) = (\frac{1}{2} + x)\mathbf{a} + (\frac{1}{2} + y)\mathbf{b} + z\mathbf{c},$$

$$T_{2_1}^{(1)}(\mathbf{r}) = (\frac{1}{2} - x)\mathbf{a} + (\frac{1}{2} - y)\mathbf{b} + (\frac{1}{2} + z)\mathbf{c}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_{2_1}^{(i)}(\mathbf{r})] = 0.$$
 (B.11)

ここで式 (B.11) の \sum を計算しやすいように $f_{2_1}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{2_1}(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi [h\frac{1}{2} + k\frac{1}{2} + l(\frac{1}{4} + z)]\}$$

$$f_{2_1}(\mathbf{h}, \mathbf{r}) で式 (B.11) の \sum の中身をくくると消滅条件として次の式が得られる。$$

$$f_{2_1}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp\{-i2\pi[hx + ky - l\frac{1}{4}]\} + \exp\{-i2\pi[-hx - ky + l\frac{1}{4}]\} \right\}$$
$$= f_{2_1}(\mathbf{h}, \mathbf{r}) \times \cos\{\frac{\pi}{2}[4(hx + ky) - l]\} = 0.$$

cos{ }の項がゼロになるのは h,k = 0, l が奇数
のときなので,表 B.6 [p.32] に示すように反射条件 (消滅しない条件) は次のようになる。

$$00l: \quad l=2n.$$

b 軸以外の方向の 2₁ らせん軸についても同様 にして表 B.6 [p.32] に示すように反射条件を導く ことができる。

B.5.3.2 らせん軸 (4₁) による消滅

原点を通る c 方向の 4₁ らせん軸の対称は次の ように記述される。

$$\begin{split} \rho[T_{4_1}^{(i)}(\mathbf{r})] &= \rho[T_{4_1}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2, 3\}.\\ T_{4_1}^{(0)}(\mathbf{r}) &= +x\mathbf{a} + y\mathbf{b} + \frac{1}{8}\mathbf{c},\\ T_{4_1}^{(1)}(\mathbf{r}) &= -y\mathbf{a} + x\mathbf{b} + \frac{3}{8}\mathbf{c},\\ T_{4_1}^{(2)}(\mathbf{r}) &= -x\mathbf{a} - y\mathbf{b} + \frac{5}{8}\mathbf{c},\\ T_{4_1}^{(3)}(\mathbf{r}) &= +y\mathbf{a} - x\mathbf{b} + \frac{7}{8}\mathbf{c}. \end{split}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{3} \exp[-i2\pi \mathbf{h} \cdot T_{4_1}^{(i)}(\mathbf{r})] = 0.$$
 (B.12)

c. ここで式 (B.12) の ∑ を計算しやすいように f₄₁(h, r) を次のように定義する。

$$f_{4_1}(\mathbf{h}, \mathbf{r}) = \exp(-\mathrm{i}2\pi l \frac{1}{2}).$$

 $f_{4_1}(\mathbf{h},\mathbf{r})$ で式 (B.12) の \sum の中身をくくると消滅条件として次の式が得られる。

$$f_{4_{1}}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp[-i2\pi(+hx+ky-l\frac{3}{8})] + \exp[-i2\pi(-hy+kx-l\frac{1}{8})] + \exp[-i2\pi(-hx-ky+l\frac{1}{8})] + \exp[-i2\pi(+hy-kx+l\frac{3}{8})] \right\} = 2f_{4_{1}}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp(+i2\pi l\frac{1}{8}) \cos\{\frac{\pi}{2}[4(hx+ky)-l]\} + \exp(-i2\pi l\frac{1}{8}) \cos\{\frac{\pi}{2}[4(hy-kx)+l]\} \right\} = 0.$$

h, k = 0かつlが偶数のとき、上の式の第1項と 第2項の $\cos\{ \}$ は1か-1の、同じ値になる。こ の条件を満たしたとして、上の式がゼロになる条 件をさらに検討する。

$$\exp(-i2\pi l \frac{1}{8}) + \exp(-i2\pi l \frac{1}{8}) \\ = 2\cos(\frac{\pi}{2} \cdot \frac{l}{2}) = 0.$$

上の式は, *l*/2 が奇数のとき, 反射が消滅すること を示している。したがって, *h*,*k* = 0 のとき*l* が 偶数で *l*/2 も偶数の条件であり,反射条件 (消滅 しない条件) は以下のように書くことができる。

$$00l: \quad l=4n.$$

同様にしてらせん軸 (4₃)の反射条件も導くこと ができる。

B.5.3.3 らせん軸 (4₂) による消滅

原点を通る c 方向の 4₂ らせん軸の対称は次の ように記述される。

$$\begin{split} \rho[T_{4_2}^{(i)}(\mathbf{r})] &= \rho[T_{4_2}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2, 3\}.\\ T_{4_2}^{(0)}(\mathbf{r}) &= +x\mathbf{a} + y\mathbf{b} + \frac{1}{4}\mathbf{c},\\ T_{4_2}^{(1)}(\mathbf{r}) &= -y\mathbf{a} + x\mathbf{b} + \frac{3}{4}\mathbf{c},\\ T_{4_2}^{(2)}(\mathbf{r}) &= -x\mathbf{a} - y\mathbf{b} + \frac{1}{4}\mathbf{c},\\ T_{4_2}^{(3)}(\mathbf{r}) &= +y\mathbf{a} - x\mathbf{b} + \frac{3}{4}\mathbf{c}. \end{split}$$

 $\frac{1}{4}$ 回転するごとに対称要素は、 $\frac{2}{4}$ c だけ並進す る。 $T_{4_2}^{(2)}(\mathbf{r}), T_{4_2}^{(3)}(\mathbf{r})$ の高さは $\frac{5}{4}$ c、 $\frac{7}{4}$ c となる のだが、単位胞の等価性により $\frac{1}{4}$ c、 $\frac{3}{4}$ c と同じ であることに注意を要する。

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{3} \exp[-i2\pi \mathbf{h} \cdot T_{4_2}^{(i)}] = 0.$$
 (B.13)

ここで式 (B.13) の \sum を計算しやすいように $f_{4_2}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{4_2}(\mathbf{h}, \mathbf{r}) = \exp[-i2\pi(l\frac{1}{2})].$$

 $f_{4_2}(\mathbf{h}, \mathbf{r})$ で式 (B.13) の \sum の中身をくくると 消滅条件として次の式が得られる。

$$\begin{aligned} f_{4_2}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp[-i2\pi(+hx + ky - l\frac{1}{4})] \\ & + \exp[-i2\pi(-ky + hx + l\frac{1}{4})] \\ & + \exp[-i2\pi(-hx - ky - l\frac{1}{4})] \\ & + \exp[-i2\pi(+kx - hy + l\frac{1}{4})] \right\} \\ & = 2f_{4_2}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp(+i2\pi l\frac{1}{4}) \cos[2\pi(hx + ky)] \\ & + \exp(-i2\pi l\frac{1}{4}) \cos[2\pi(kx - hy)] \right\} \\ & = 0. \end{aligned}$$

上の消滅則を論じることができるのは, cos[]の 中身がゼロ, すなわち *h*,*k* = 0 のときだけであ る。この条件を満たすことを前提に, 上の式をさ らに変形すると,

$$\exp(-i2\pi l \frac{1}{4}) + \exp(+i2\pi l \frac{1}{4}) = 2\cos(\frac{\pi}{2}l) = 0.$$

したがってらせん軸 (4₂) の反射条件 (消滅しない 条件) は,以下のように導かれる。

$$00l: l = 2n.$$

らせん軸 (6₃) の反射条件も上と同じだが,これ については付録 C §C.2.5 [p.48] を参照。 To be continued

付録 C

三方晶および六方晶の座標のとり方と消 滅則

図 C.1 International Tables for Crystallography (2006) Vol.A, 対称要素の図。 $P3_121(\#152)$

この章は,時間があるときに参考までに読むこ とが推奨される。

三方晶および六方晶に対しては、ほかの結晶 系と比べてかなり特殊な座標軸のとり方をし、 *h k i l(h + k + i = 0)*のように4つの反射指数 を用いて逆格子点を記述するのが一般的である。 この章では、この記述法の合理性を説明し、3回 らせん軸と6回らせん軸による消滅則について記 述する。

C.1 三方晶の場合

C.1.1 International Tables for Crystallography (2006) Vol.A に示された図

図 C.1 は International Tables for Crystallography (2006) Vol.A に掲載されている空間群 P3₁21(#152) の対称要素を示した図である。図

図 C.2 International Tables for Crystallography (2006) Vol.A, 原子座標の図。 $P3_121(\#152)$

C.2 は同じく空間群 *P*3₁21(#152) の原子座標を 示している。

単位胞は, 正三角形をふたつ連ねた菱形である。 三方晶については一般に, 3 回軸を c 軸にとる。 a 軸と b 軸は同じ長さで互いに $120^{\circ}(=\frac{2}{3}\pi)$ の 角をなす。図 C.1 に示すように, c 軸方向に 3_1 らせん軸が存在し, a 軸と b 軸方向に 2_1 らせん 軸が存在する。しかし三方晶の場合は, 2_1 らせ ん軸による反射の消滅はない。これについては §C.1.4 [p.45] に記述する。

C.1.2 実格子と逆格子ベクトルのとり方

図 C.3 は三方晶および六方晶の場合の実格子と 逆格子の基本並進ベクトルとり方を示している。

c 軸を 3 回軸になるようにとり, **a** 軸と **b** 軸 は同じ長さで互いに 120°の角度をなすようにと

図 C.3 三方晶および六方晶に対する座標のと り方。実格子 (黒) と逆格子 (グレー)の基本並 進ベクトル

る。図 C.3 に示すように, \mathbf{a} 軸と \mathbf{b} 軸のとり方に は, \mathbf{a}_0 と \mathbf{b}_0 , \mathbf{a}_1 と \mathbf{b}_1 , \mathbf{a}_2 と \mathbf{b}_2 の, 3 通りが ある。

逆格子基本並進ベクトル **a***, **b***, **c*** の定義は 次の通りである。

$$\mathbf{a}^* = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})},$$
$$\mathbf{b}^* = \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})},$$
$$\mathbf{c}^* = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}.$$

逆格子をこのように定義することの合理性につい ては,付録 A [p.23] を参照。

上の式に忠実に \mathbf{a}_i^* , \mathbf{b}_i^* ($i \in \{0,1,2\}$)を計算して作図すると図 C.3 のグレーの矢印のようになる。この図から容易に, \mathbf{a}_0^* , \mathbf{b}_0^* を \mathbf{a}_i^* , \mathbf{b}_i^* ($i \in \{1,2\}$)で表す次の関係が理解できる。

$$\begin{aligned} \mathbf{a}_0^* &= -\mathbf{b}_1^* \\ &= -\mathbf{a}_2^* + \mathbf{b}_2^*, \\ \mathbf{b}_0^* &= \mathbf{a}_1^* - \mathbf{b}_1^* \\ &= -\mathbf{a}_2^*. \end{aligned}$$

このことから, 逆格子ベクトル $h\mathbf{a}_0^* + k\mathbf{b}_0^* + l\mathbf{c}^*$

は次のようにも表すことができる。

$$h\mathbf{a}_0^* + k\mathbf{b}_0^* + l\mathbf{c}^*$$

= $k\mathbf{a}_1^* + i\mathbf{b}_1^* + l\mathbf{c}^*$
= $i\mathbf{a}_2^* + h\mathbf{b}_2^* + l\mathbf{c}^*$,
where, $h + k + i = 0$.

h + k + i = 0の縛りをかけた上で、h k i l o 4つの指数で反射を表現するメリットは、逆空間の 3 回対称による等価な反射を理解しやすい点にあ る。例えば $\mathbf{a}_0^*, \mathbf{b}_0^*, \mathbf{c}^*$ の逆格子座標系で、3 つの 指数 1 1 0 のように表される反射は、 $\mathbf{a}_1^*, \mathbf{b}_1^*, \mathbf{c}^*$ の逆格子座標系で 1 $\overline{2}$ 0、 $\mathbf{a}_2^*, \mathbf{b}_2^*, \mathbf{c}^*$ の逆格子座 標系で $\overline{2}$ 1 0 と表される反射と同一である。4 つ の指数 1 1 $\overline{2}$ 0 で表されるこの反射は、1 $\overline{2}$ 1 0、 $\overline{2}$ 1 1 0 の反射と逆空間の 3 回対称により等価で あることがわかりやすいのである。

C.1.3 31 らせん軸による消滅則の導出

付録 B の §B.5 [p.36] の記述と同様にして 3₁ らせん軸の消滅則を以下のように導出できる。

原点を通る c 方向の 3₁ らせん軸の対称は次の ように記述される。

$$\rho[T_{3_1}^{(i)}(\mathbf{r})] = \rho[T_{3_1}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2\}.$$

$$T_{3_1}^{(0)}(\mathbf{r}) = x\mathbf{a}_0 + y\mathbf{b}_0 + z\mathbf{c},$$

$$T_{3_1}^{(1)}(\mathbf{r}) = x\mathbf{a}_1 + y\mathbf{b}_1 + (\frac{1}{3} + z)\mathbf{c},$$

$$T_{3_1}^{(2)}(\mathbf{r}) = x\mathbf{a}_2 + y\mathbf{b}_2 + (\frac{2}{3} + z)\mathbf{c}.$$
 (C.1)

一方,図C.3を参照して次の式が導ける。

$$\begin{aligned} & \mathbf{a}_1 = \mathbf{b}_0, \\ & \mathbf{b}_1 = -\mathbf{a}_0 - \mathbf{b}_0, \\ & \mathbf{a}_2 = -\mathbf{a}_0 - \mathbf{b}_0, \\ & \mathbf{b}_2 = \mathbf{a}_0, \end{aligned}$$

これらを式 (C.1) に代入して

$$\rho[T_{3_1}^{(i)}(\mathbf{r})] = \rho[T_{3_1}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2\}.$$

$$T_{3_1}^{(0)}(\mathbf{r}) = x\mathbf{a}_0 + y\mathbf{b}_0 + z\mathbf{c},$$

$$T_{3_1}^{(1)}(\mathbf{r}) = -y\mathbf{a}_0 + (x - y)\mathbf{b}_0 + (\frac{1}{3} + z)\mathbf{c},$$

$$T_{3_1}^{(2)}(\mathbf{r}) = (-x + y)\mathbf{a}_0 - x\mathbf{b}_0 + (\frac{2}{3} + z)\mathbf{c}.$$
(C.2)

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{2} \exp[-i2\pi \mathbf{h} \cdot T_{3_{1}}^{(i)}(\mathbf{r})] = 0.$$
 (C.3)

ここで上の式の \sum を計算しやすいように $f_{3_1}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{3_1}(\mathbf{h}, \mathbf{r}) = \exp[-\mathrm{i}2\pi(lz)].$$

f₃₁(**h**,**r**) で式 (C.3) の ∑ の中身をくくると消滅 条件として次の式が得られる。

$$f_{3_1}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp\{-i2\pi [hx + ky]\} + \exp\{-i2\pi [-hy + k(x - y) + l\frac{1}{3}]\} + \exp\{-i2\pi [-h(-x + y) - kx + l\frac{2}{3}]\} \right\} = 0.$$

上の式の $\exp\{\}$ の中身にある [hx + ky], [-hy + k(x - y)], [h(-x + y) - kx] の項については x, y に依存する値であるため, 任意の x, y についての 消滅を議論できるのは, h = k = i = 0のときだ けである。この条件の下で消滅条件を書き直すと 次のようになる。

$$1 + \exp(-i2\pi l \frac{1}{3}) + \exp(-i2\pi l \frac{2}{3}) = 0.$$
(C.4)

上の式左辺の第 2 項および第 3 項は, l = 3n の とき,いずれも 1 となり消滅せず, l = 3n + 1 の とき, $\exp(-i2\pi \frac{1}{3})$, $\exp(-i2\pi \frac{2}{3})$ となり消滅, l = 3n + 2 のとき, $\exp(-i2\pi \frac{2}{3})$, $\exp(-i2\pi \frac{1}{3})$ となり消滅,となる。したがって反射条件は次の ようになる。

000l: l = 3n.

32 らせん軸についても,同様な考察により同じ反射条件を導くことができる。

C.1.4 a, b 軸方向の 2₁ らせん軸による消滅がな いことについて

図 C.1 [p.43] を見ると $x = \frac{1}{2}$ と $y = \frac{1}{2}$ の場 所に 2₁ らせん軸が存在する。しかし、これらの らせん軸による消滅はない。理由は、**a** と **a***、**b** と **b*** が平行でないからである。このことについ て以下に記述する。 \mathbf{a}_0 軸周りの回転操作は \mathbf{a}_0 軸に垂直な平面内 での点の移動で表される。図 C.3 [p.44] を見て 考察すると、 \mathbf{a}_0 に垂直なのは、 \mathbf{c} と \mathbf{b}_0^* の方向で ある。 \mathbf{b}_0^* の方向を \mathbf{a}_0 と \mathbf{b}_0 の一次結合で表すと $\frac{1}{2}\mathbf{a}_0 + \mathbf{b}_0$ となる。したがって $(y, z) = \frac{1}{2}, \frac{1}{3}$ の位置にある \mathbf{a}_0 方向の 2_1 らせん軸の対称は次 のように記述される。

$$\rho[T_{2_{1}}^{(i)}(\mathbf{r})] = \rho[T_{2_{1}}^{(0)}(\mathbf{r})], \quad i \in \{0, 1\}.$$

$$T_{2_{1}}^{(0)}(\mathbf{r}) = x\mathbf{a}_{0}$$

$$+ (\frac{1}{2} + y)(\frac{1}{2}\mathbf{a}_{0} + \mathbf{b}_{0})$$

$$+ (\frac{1}{3} + z)\mathbf{c}$$

$$= (x + \frac{1}{4} + \frac{1}{2}y)\mathbf{a}_{0}$$

$$+ (\frac{1}{2} + y)\mathbf{b}_{0}$$

$$+ (\frac{1}{3} + z)\mathbf{c},$$

$$T_{2_{1}}^{(1)}(\mathbf{r}) = (\frac{1}{2} + x)\mathbf{a}_{0}$$

$$+ (\frac{1}{2} - y)(\frac{1}{2}\mathbf{a}_{0} + \mathbf{b}_{0})$$

$$+ (\frac{1}{3} - z)\mathbf{c}$$

$$= (x + \frac{3}{4} - \frac{1}{2}y)\mathbf{a}_{0}$$

$$+ (\frac{1}{2} - y)\mathbf{b}_{0}$$

$$+ (\frac{1}{3} - z)\mathbf{c}.$$
(C.5)

式 (B.2) [p.36] のように消滅条件 (実は存在しな いのだが) を記述すると

$$\sum_{i=0}^{1} \exp[-i2\pi \mathbf{h} \cdot T_{2_1}^{(i)}(\mathbf{r})] = 0.$$
 (C.6)

ここで式 (C.6) の \sum を計算しやすいように $f_{2_1}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{2_1}(\mathbf{h}, \mathbf{r}) = \exp\{-i2\pi [h(\frac{1}{2} + x) + k\frac{1}{2} + l\frac{1}{3}]\}$$

$$f_{2_1}(\mathbf{h}, \mathbf{r}) で式 (C.6) の \sum の中身をくくると消滅$$

図 C.4 International Tables for Crystallography (2006) Vol.A, 対称要素の図。 $P6_{1}22(\#178)$

条件として次の式が得られる。

$$f_{2_1}(\mathbf{h}, \mathbf{r}) \times \left\{ \exp\{-i2\pi [h(\frac{1}{4} - \frac{1}{2}y) - ky - lz]\} + \exp\{-i2\pi [-h(\frac{1}{4} - \frac{1}{2}y) + ky + lz]\} \right\}$$
$$= f_{2_1}(\mathbf{h}, \mathbf{r}) \times \cos\{2\pi [h(\frac{1}{4} - \frac{1}{2}y) - ky - lz]\} = 0.$$

上の式は、2₁ らせん軸による消滅がないことを 示している。cos{ } の中身、h, k, l のいずれの項 も実空間の座標 y ないしは z に依存するからで ある。cos{ } の中身の第 2 項 $-h\frac{1}{2}y$ はらせん 軸である \mathbf{a}_0 軸が \mathbf{a}_0^* 軸に平行でないことによっ て出てきている。らせん軸に平行な逆格子基本並 進ベクトルが存在し、この項がなければ、付録 B §B.5.3 [p.39] に記述したように、k, l = 0 の条件 の下で h に対する消滅則を論じることができる のである。

一般に,らせん軸に平行な逆格子基本並進ベク トルが存在しないとき,そのらせん軸による消滅 はない。

同様にして、 \mathbf{b}_0 および $\mathbf{a}_0 + \mathbf{b}_0$ 方向のらせん 軸による消滅がないことを証明できる。図 C.1 [p.43] の紙面には 3 方向の 2_1 らせん軸が示され ている。図 C.3 [p.44] に示すように実格子の基 本並進ベクトルのとり方には $\mathbf{a}_i, \mathbf{b}_i (i \in \{0, 1, 2\})$ の任意性があり、これに伴って逆格子基本並進

図 C.5 International Tables for Crystallography (2006) Vol.A, 原子座標の図。 $P6_{1}22(\#178)$

ベクトルも $\mathbf{a}_i^*, \mathbf{b}_i^* (i \in \{0, 1, 2\})$ のいずれかをと ることができる。しかし図 C.3 [p.44] にグレー の矢印で描かれた逆格子基本並進ベクトルで,図 C.1 [p.43] に示された 2_1 らせん軸と平行なもの はない。

C.2 六方晶の場合

C.2.1 International Tables for Crystallography (2006) Vol.A に示された図

図 C.4 は International Tables for Crystallography (2006) Vol.A に掲載された空間群 $P6_{1}22(\#178)$ の対称要素を示した図である。図 C.5 は同じく空間群 $P6_{1}22(\#178)$ の原子座標を 示している。

単位胞のとり方は図 C.1 [p.43], 図 C.2 [p.43] に示した三方晶の場合と同様である。図 C.4 に 赤枠で囲った 2₁ らせん軸があり, 図 C.3 [p.44] にグレーで示した **a**^{*}₀ 軸と **b**^{*}₀ 軸に平行である。 しかしこれらによる消滅はない。図 C.5 を参照 するとわかるのだが,これらのらせん軸の周期 は単位胞の周期の 2 倍になっている。厳密な証 明は省略するが,消滅がないことを導くことがで きる。

C.2.2 6回らせん軸を記述するための座標

原子 (分子) の座標を記述するのに,図 C.3 [p.44] に示した **a**₀, **b**₀ の基本並進ベクトルを $\frac{i}{6}$ 回転 $(i \in \{0, 1, 2, 3, 4, 5\})$ させた基本並進ベクトルの組 \mathbf{a}_i , \mathbf{b}_i を次のように用意する必要がある。

\mathbf{a}_i	\mathbf{b}_i	i
\mathbf{a}_0	\mathbf{b}_0	0
$\mathbf{a}_0 + \mathbf{b}_0$	$-\mathbf{a}_0$	1
\mathbf{b}_0	$-\mathbf{a}_0 - \mathbf{b}_0$	2
$-\mathbf{a}_0$	$-\mathbf{b}_0$	3
$-\mathbf{a}_0 - \mathbf{b}_0$	\mathbf{a}_0	4
$-\mathbf{b}_0$	$\mathbf{a}_0 + \mathbf{b}_0$	5

この座標系から、 $x\mathbf{a}_0 + y\mathbf{b}_0$ の位置を $\frac{i}{6}$ 回転 ($i \in \{0, 1, 2, 3, 4, 5\}$)させた位置 $x_i\mathbf{a}_0 + y_i\mathbf{b}_0$ を 次のように導くことができる。

$$\begin{array}{ll} x_0 = x, & y_0 = y, \\ x_1 = x - y, & y_1 = x, \\ x_2 = -y, & y_2 = x - y, \\ x_3 = -x, & y_3 = -y, \\ x_4 = -x + y, & y_4 = -x, \\ x_5 = y, & y_5 = -x + y \end{array}$$

C.2.3 6₁ らせん軸による消滅則の導出

原点を通る c 方向の 6₁ らせん軸の対称は次の ように記述される。

$$\begin{split} \rho[T_{6_1}^{(i)}(\mathbf{r})] &= \rho[T_{6_1}^{(0)}(\mathbf{r})], \quad i \in \{0, 1, 2, 3, 4, 5\}.\\ T_{6_1}^{(0)}(\mathbf{r}) &= x\mathbf{a}_0 + y\mathbf{b}_0 + z\mathbf{c},\\ T_{6_1}^{(1)}(\mathbf{r}) &= (x - y)\mathbf{a}_0 + x\mathbf{b}_0 + (\frac{1}{6} + z)\mathbf{c},\\ T_{6_1}^{(2)}(\mathbf{r}) &= -y\mathbf{a}_0 + (x - y)\mathbf{b}_0 + (\frac{2}{6} + z)\mathbf{c},\\ T_{6_1}^{(3)}(\mathbf{r}) &= -x\mathbf{a}_0 - y\mathbf{b}_0 + (\frac{3}{6} + z)\mathbf{c},\\ T_{6_1}^{(4)}(\mathbf{r}) &= (-x + y)\mathbf{a}_0 - x\mathbf{b}_0 + (\frac{4}{6} + z)\mathbf{c},\\ T_{6_1}^{(5)}(\mathbf{r}) &= y\mathbf{a}_0 + (-x + y)\mathbf{b}_0 + (\frac{5}{6} + z)\mathbf{c}. \end{split}$$

式 (B.2) [p.36] のように消滅条件を記述すると

$$\sum_{i=0}^{5} \exp[-i2\pi \mathbf{h} \cdot T_{6_1}^{(i)}(\mathbf{r})] = 0.$$
 (C.7)

ここで上の式の \sum を計算しやすいように $f_{6_1}(\mathbf{h},\mathbf{r})$ を次のように定義する。

$$f_{6_1}(\mathbf{h}, \mathbf{r}) = \exp[-\mathrm{i}2\pi(lz)].$$

*f*₆₁(**h**,**r**) で式 (C.7) の ∑ の中身をくくると消滅 条件として次の式が得られる。

$$\begin{split} & f_{6_1}(\mathbf{h}, \mathbf{r}) \times \\ & \left\{ \exp\{-\mathrm{i}2\pi [hx + ky]\} \right. \\ & + \exp\{-\mathrm{i}2\pi [h(x - y) + kx + l\frac{1}{6}]\} \\ & + \exp\{-\mathrm{i}2\pi [-hy + k(x - y) + l\frac{2}{6}]\} \\ & + \exp\{-\mathrm{i}2\pi [-hx - ky + l\frac{3}{6}]\} \\ & + \exp\{-\mathrm{i}2\pi [h(-x + y) - kx + l\frac{4}{6}]\} \\ & + \exp\{-\mathrm{i}2\pi [hy + k(-x + y) + l\frac{5}{6}]\} \Big\} = 0. \end{split}$$

上の式において,実空間の座標にかかわらず消滅 則を議論できるのは,h = k = i = 0のときのみ である。この条件のもとで,上の消滅条件を書き 直すと

1

$$+ \exp(-i2\pi l \frac{1}{6}) + \exp(-i2\pi l \frac{2}{6}) + \exp(-i2\pi l \frac{3}{6}) + \exp(-i2\pi l \frac{4}{6}) + \exp(-i2\pi l \frac{4}{6}) + \exp(-i2\pi l \frac{5}{6}) = 0.$$
 (C.8)

l = 6nのとき,左辺すべての項が1となり消滅 せず,l = 6n + i ($i \in \{1, 2, 3, 4, 5\}$)のとき,第 1項から第6項までの位相が $-2\pi \frac{i}{6}$ 間隔となり 消滅するため,反射条件は以下のようになる。

$$hkil: l = 6n. \tag{C.9}$$

同様にして,同じ反射条件を,65 らせん軸に対 して導出できる。

図 C.4 [p.46] には 2₁ らせん軸および 3₁ らせん 軸の記号が示されているが、それらの反射条件と l = 6n の論理積をとると l = 6n となり、これが そのまま図 C.4、C.5 [p.46] に示す $P6_{1}22(\#178)$ の反射条件となる。

C.2.4 62 らせん軸による消滅則の導出

6₂ らせん軸に対する式 (C.8) に相当する式は, 以下のようになる。

$$1 + \exp(-i2\pi l \frac{1}{3}) + \exp(-i2\pi l \frac{2}{3}) + 1 + \exp(-i2\pi l \frac{1}{3}) + \exp(-i2\pi l \frac{1}{3}) + \exp(-i2\pi l \frac{2}{3}) = 0.$$

l = 3nのとき,左辺すべての項が1となり消滅 しない,l = 3n + i ($i \in \{1,2\}$)のとき,第1項 から第6項までの位相が $-2\pi \frac{i}{3}$ 間隔となり消滅 するため,反射条件は以下のようになる。

$$hkil: l = 3n. \tag{C.10}$$

同様にして、同じ反射条件を、64 らせん軸に対

して導出できる。

C.2.5 63 らせん軸による消滅則の導出

63 らせん軸に対する式 (C.8) に相当する式は, 以下のようになる。

$$1 + \exp(-i2\pi l \frac{1}{2}) + 1 + \exp(-i2\pi l \frac{1}{2}) + 1 + \exp(-i2\pi l \frac{1}{2}) = 0.$$

*l*が偶数のとき、左辺すべての項が1となり消滅 しない、*l*が奇数とのき、第1項から第6項まで の位相が $-2\pi \frac{1}{2}$ 間隔となり消滅するため、反射 条件は以下のようになる。

$$hkil: l = 2n. \tag{C.11}$$

索引

記号/数字	
4322	10
$P4_{1}2_{1}2$	11
$P4_{3}2_{1}2$	11
R 因子	16, 20
1JEF	13
1 次構造	13
2LYZ	13
2lyz_A.fasta	17
4つの反射指数 hkil の合理性	43, 44
Α	
Aba2(#41)	33

Aba2(#41)	33
Abm2(#39)	33
Ama2(#40)	33
Amm2(#38)	33

B

Bravais lattice	29, 31
C	
C12/c1	34, 35
$C_{2}/a(\#15)$	24 25

C2/c(#15)	34, 35
CCP4	i, 1, 4, 6, 9
CCP4i	i
CCP4i2	i, 13, 14
Coot	21
CrysAlis ^{Pro}	1, 3, 9
Cubic	29
c 映進面	33

D

Data reduction - AIMLESS	15,	20
Define AU contents	14,	17
D アミノ酸		38

E	
Ewald	23, 24
$exp_2488_auto.mtz$	16
F	

Finalize 9

G	
Google	1
Google Chrome	3

H

<u>n</u>	
H-M 表記	32-36
Hermann-Mouguin notation	32, 35
Hexagonal	29
L	
Laue	23, 24
L アミノ酸	38

Baao	-0,
L アミノ酸	

Molecular Repalacement and refine	ment - MOLREP
14, 19	
MOLREP	i, 18, 20
Monoclinic	29, 31-33, 35, 36
MTZ ファイル	1, 9, 11, 14, 20
N	
NMR	13
<u>0</u>	
Orthorhombic	29, 36
<u>P</u>	
$P\overline{1}(\#2)$	34, 35
$P112_{1}$	36
$P112_{1}/a$	33
$P112_{1}/b$	33
$P112_{1}/n$	33
$P12_{1}/a1$	33, 34
$P12_{1}/c1$	33, 34
$P12_{1}/n1$	33, 34
$P12_{1}1$	34-36
$P2_1(#4)$	34-36
$P2_1/b11$	33
$P2_1/c(\#14)$	29-32, 34, 35
$P2_1/c11$	33
$P2_1/n11$	33
$P2_{1}11$	36
$P2_12_12_1(\#19)$	33–36
$P3_121(\#152)$	43
$P4_{3}2_{1}2(\#96)$	10
$P6_122(\#178)$	45-47
PDB ID	13
PDB(Protein Data Bank)	13
pdbljef.ent	14
process.out	29
Project Viewer	14, 15
R	
Refinement - REFMAC5	14, 20
REFMACS5	i
Rigaku Oxford Diffraction forum	1
S	
Schönflies notation	32
<u>T</u>	
Task menu	14
Taurine	29, 31
Tetragonal	29
Triclinic	29, 35
Trigonal	29
W	
Wyckoff, R. W. G.	31

索引

X		 対称要素	30
X-ray data reduction and ana	alysis 15	体心格子	32, 33, 37
X 線回折強度データ	17	体心単斜晶	30, 31, 33
		タウリン	29, 31
あ		単斜晶	29, 31–33, 35, 36
アミノ酸	i	単純格子	31, 33, 35
アミノ酸配列	13 17	直方晶 (斜方晶)	29, 36
位相問題	$32 \ 34 \ 35$	底心格子	33, 35–37
应有问题 肿准而	33 38	電子密度マップ	21
てバルト	23, 24	等価な格子点	24
エバルト球	23, 24 23, 25	等電子密度面	21
エバルトの反射冬性	23, 20 23-25		
三, 元, 下的反射来[]	20-20	な	
か			31
基本並進ベクトル	24	ニワトリ卵白リゾチーム	13
逆空間	23.25		
送 <u>工</u> 高 道格子	23, 25	は	
道格子基本ベクトル	20, 20	非対称フニット	i 17
送伯] 墨平 (7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24	フォールディング	1, 11
· 加丁 /// / // // // // // // // // // // //	10 16 20 21 22 42	道今枚子	21 22 26
工间研 クライナ電乙頭御焙	10, 10, 29, 51, 52, 45	「夜口伯」	51, 52, 50
フノイオ电丁娯似処	10	ノノックの未什氏 ゴラッグの長日冬件	23-23
4Hmm 红目 玄	31 91		20-20
和明示	31	ノノベー相」	29, 31
和明博坦四丁	30	ノロシェクト	10
の定我式		刀 胖肥 ハス 異協	10
結時の 伊槻則 	23	刀丁直揆 八乙里施社	19, 21
結前の約40 度了 広振 データ	23	刀丁直揆伝	13
尿丁唑悰ナータ 水労用性仕	13, 14, 21	万丁モテル	21
尤字異性体	38	へルマン-モーカン衣記	32, 35
さ		<u></u>	
三次元目の条件	24	マージ	i. 14. 16–20
三斜晶	29, 35	ミラー指数	15. 26
三方晶	29, 43	ミラーの作図法	26
シーケンスファイル	i	面心格子	33.37
シェーンフリース表記	32)
七面鳥卵白リゾチーム	13	5	
斜方晶 (直方晶)	29. 36	<u>-</u> ニー	<u></u> <u></u>
消滅則	10, 23, 29, 32, 38, 43	ノリエ	23, 24
消滅則一覧	32	ノリエロ	29, 52
ジョブ	14	ラウエの未什氏	20
水和水	20	フリエの反射来什	23-23
正方晶	29	ノセミ体	00 10 21 22 25 26 20 41 42
相同タンパク質		ら ² ん ¹ つ ² し ²	10, 51-55, 55, 50, 59-41, 45
HI 37 * 77 A	19	<u> 立</u> 刀 前 <u> 土</u> ナ 目	29
た		八力崩 	29, 43
对称性	23	b	
対称中心	35		
			51